


form M (p; s) = G (as1p1; :::; asJ pJ ) where the function M is known or identi�ed, e.g., M could be

a conditional mean function estimated by nonparametric regression. We wish to point identify, up

to normalization, the vector of coe�cients as = ( as1; :::; asJ ) for each value thats can take on.

Note that this is not a single linear index model. Many results exist for identifying coe�cients

in linear index models, i.e., models that are functions ofa1p1 + ::: + aj pj . But those results are

not applicable to this context. Here eachpj appears separately, and generally nonlinearly, in the

function G. Still, as we show below, multiple (rather than single) linear index models do form a

special case of the models we consider, so our results add to the existing literature on identi�cation

of multiple linear index models.

We provide three di�erent assumptions that su�ce to point identify the coe�cients asj for

j = 1; :::; J . Each assumption has di�erent strengths and weaknesses, so di�erent ones will be more

or less useful depending on context. An attractive feature of these identi�cation results is that they

do not impose any monotonicity on the functionG.

We then extend these results to show point identi�cation of a general set of collective household

consumption models. There is a long literature on the identi�cation and estimation of collective

household models of consumption. These are models of households with multiple members, each

of whom maximizes a utility function, subject to their claims on the household's resources and

a household budget constraint. Objects of particular interest are resource shares, de�ned as the

fractions of household resources spent on each family member. Virtually all of the identi�cation

results in this collective household model literature either point identify speci�c functional forms,

or point identify only a subset of the model's features, or only establishes either set or generic

identi�cation rather than point identi�cation.

Generic identi�cation of a model means that the model is usually point identi�ed, but there can

exist situations where point identi�cation fails. More formally, generic identi�cation says that in

the set of all possible data generating processes that satisfy the model's assumptions, the subset for

which point identi�cation fails has measure zero. See McManus (1992) and Lewbel (2019) for more

details regarding the formal de�nition of generic identi�cation.

The well known collective household identi�cation results of Chiappori and Ekeland (2006,

2009) and earlier authors, showing nonparametric identi�cation up to unknown levels for resource

shares, are generic identi�cation theorems. As a result, there exist functional forms where point

identi�cation fails. For example, their model is not nonparametrically point identi�ed if household

members have Cobb-Douglas preferences. Moreover, as is typical for generic identi�cation results,
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equation (1) holds where eachasj captures the non-neutral technical e�ciency of input j , and/or

the quality of input j , by a �rm with characteristics s. More generally, thep in M (p; s) could be

a vector of both input and output prices in a multiple output production process, with signs ofasj

determining which elements are inputs and which are outputs in a �rm with characteristicss. A

large literature exists on modeling heterogeneity in non-neutral e�ciency in both macro, as in Basu

and Fernald (1997), and industrial organization, as in Ackerberg, Caves, and Frazer (2015), and

Gandhi, Navarro, and Rivers (2020).

3. Multiple linear index models. These can be constructed as a special case of our model.

Suppose we add the constraint that allasj and pj are strictly positive (this constraint will ap-

ply in our empirical application). Then we can equivalently write equation (1) asM (p; s) =

eG (ln as1 + ln p1; :::; ln asJ + ln pJ ). Sinces has �nite support we can next equivalently replace each

ln asj with a saturated model lnaj (s) = � 0
j S whereS is a vector of binary variables indicating each

possible value in the support ofs. We then getM (p; s) = eG
�
� 0

1S + ln p1; :::; � 0
j S + ln pJ

�
, which is

a multiple linear index structure. Multiple linear index models are popular structures in statistics

and econometrics, with estimators including Ichimura and Lee (1991), Horowitz (1998), Xia, Tong,

Li, and Zhu (2002), Xia (2008), Donkers and Schafgans (2008), and Ahn, Ichimura, Powell, and

Ruud (2018). The restriction that each linear index has one explanatory variable that appears only

in that index, with a coe�cient of one (corresponding to the lnpj terms in eG) appears as Assump-

tion 3a in Donkers and Schafgans (2008). They observe this is one way to satisfy some necessary

conditions for identi�cation that appeared previously in the literature. Note that, in addition to the

constraint that all asj and pj in our model be strictly positive, the multiple linear index literature

mostly focuses on applications where regressors are continuous, rather than our opposite extreme

where onlyp is continuous.

4. Collective Household Models. The modern literature on Pareto e�cient collective

household models begins with Becker (1965, 1981) and Chiappori (1988, 1992). An important series

of papers in this literature establishes that, from only observing the demand functions of households,

one cannot point identify resource shares (a resource share is the fraction of a household's total

resources that are spent on the utility of any one household member). However, one can generically

identify the marginal e�ects of policy variables on resource shares. Equivalently, each resource share

is only point identi�ed up to an unknown location constant. See, e.g., Browning, Bourguignon,

Chiappori, and Lechene (1994), Browning and Chiappori (1998), Vermeulen (2002), and Chiappori
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and Ekeland (2006, 2009).2 Prominent papers that make use of these identi�cation results include

Chiappori, Fortin, and Lacroix (2002), and Blundell, Chiappori, and Meghir (2005).

By adding additional assumptions, more recent papers either generically identify the entire

model, including the levels of resource shares, e.g., Browning, Chiappori, and Lewbel (2013), or

point identify some features of the model (such as resource shares without price e�ects), e.g.,

Lewbel and Pendakur (2008), Bargain and Donni (2012), Dunbar, Lewbel, and Pendakur (2013),

and Penglase (2019). Still other papers impose additional parametric restrictions to obtain point

identi�cation, e.g., Couprie, Peluso, and Trannoy (2010) and Lise and Seitz (2011).

None of the above results accomplish our goal, which is to provide su�cient conditions to

semiparametrically point identify (not just generically identify) an entire collective household model,

including resource share levels and price e�ects.



3 Semiparametric Coe�cient Identi�cation

Let as = ( as1; :::; asJ ) be aJ -vector of coe�cients we wish to identify. Let As be theJ by J diagonal

matrix that has the vector as on the diagonal. LetP = ( P1; :::; PJ ) be a J -vector of continuous

covariates (possibly also including some mass points) and letS be a discrete covariate (or vector

of covariates). Assume we can identify a functionM (P; S), e.g., M (P; S) might be a conditional

mean, conditional density, or conditional quantile function that we could consistently estimate. The

goal is to identify the unknown vector of coe�cientsas = ( as1; :::; asJ ) in the model

M (p; s) = G (as1p1; :::; asJ pJ ) = G (A sp) (3)

for some unknown functionG.

In this section we provide three alternative sets of conditions, each of which su�ce for point

identi�cation of the vector of coe�cients ( as1; :::; asJ ) for each values that S can equal. Each has

relative advantages and disadvantages. None, however, require monotonicity of the functionG. The

following two assumptions are common to all three sets of assumptions.

ASSUMPTION A1: Let the support of (P; S) be 
 p � 
 s. For each (p; s) 2 
 p � 
 s, equation (3)

holds for some unknown functionG and some vector of constantsas = ( as1; :::; asJ ). The function

M (p; s) is identi�ed for all (p; s) 2 
 p � 
 s.

ASSUMPTION A2: Assume for somet 2 
 s that atj = 1 for j = 1; :::; J .

Assumption A1 essentially just lays out the model. Assumption A2 is a scale normalization.

Assumption A2 can be made without loss of generality (as long asatj is not identically zero),

because we can simply rede�ne the functionG to make atj = 1, by replacing G with eG de�ned by

eG (p) = G (at1p1; :::; atJ pJ ) and replacing eachasj with easj de�ned by easj = asj =atj . Note, however,

that the choice of normalization can a�ect economic interpretation of the functionG and the asj

coe�cients. 4

Our �rst alternative identifying assumption is the following

ASSUMPTION A3: AssumeG (p) is continuously di�erentiable. Let mj (p; s) = @M(p; s) =@pj
4In our collective household application, theasj coe�cients are measures of how much each goodj is shared

(consumed jointly by multiple members) in a household of types. There it will be appropriate to normalize atj to
equal one for singlest (people who live alone), and who therefore cannot be sharing. See Lewbel (2019) for more
on the economic implications of scale normalizations.
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and let gj (p) = @G(p) =@pj . For any J -vector � = ( � 1; ::; � J ), de�ne the J -vector valued function

� (�; p; s) as having the elements

� j (�; p; s) =
mj (p; s)

gj (� 1p1; :::; � J pJ )
for j = 1; :::; J

For eachs 2 
 s, assume there exists aep 2 
 p such that Asep 2 
 p and � j (�; p; s) is a contraction

on a.

Assumption A3, is a high level assumption, which may therefore be hard to verify in practice.

However, in the special case of multiple linear index models, Assumption A3 corresponds to uniquely

recovering index coe�cients from derivatives ofM , and so relates to the identi�cation conditions

given in Xia (2008) and Donkers and Schafgans (2008).

An alternative to Assumption A3 is Assumption A4, which is more restrictive than A3, but is

a much lower level assumption and hence may be simpler to verify in some applications.

ASSUMPTION A4: Assume 
 p includes a (possibly one sided) neighborhood of zero, and that

G (p) is continuously di�erentiable for all p in that neighborhood of zero. Assume for eachj = 1; :::; J

that @G(p) =@pj (or the corresponding one sided derivatives) does not equal zero whenp = 0.

Assumption A4 exploits how our model simpli�es at the point wherep = 0. This is a method of

identi�cation that is also used by Matzkin (2003, 2012) and Lewbel and Pendakur (2017). Applying

Assumption A4 whenp is prices requires the one sided version of Assumption A4, since prices cannot

be negative. In practice, this identi�cation would require some probability of observing arbitrarily

low prices (so the support ofp contains values in the neighborhood of zero). However, both ordinary

consumer demand models and collective household models are linearly homogeneous in pricesp and

total expenditures y. Therefore, it is only p=y that needs to include a one sided neighborhood of

zero, and the presence of very wealthy consumers can insure that some observed values ofp=y are

very close to zero.

De�ne the random vector V by V = ( V1; :::; VJ ) where Vj = asj Pj . Let 
 v denote the support

of V .

LEMMA 1: Let Assumptions A1 and A2 hold. If either Assumption A3 or Assumption A4 also

holds then the coe�cients as1; :::; asJ and the function G (v) are point identi�ed for all v 2 
 v and

s 2 
 s.
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The identi�cation in Lemma 1 is what Khan and Tamer (2010) call "thin set" identi�cation.

Thin set identi�cation is when identi�cation is based on a measure zero subset of the support of

the data. In this example, identi�cation is based either on the pointp that makes Assumption A3

hold, or the point p = 0 for Assumption A4. Either such point is observed with probability zero

if P is continuous. The more well known concept of "identi�cation at in�nity" as in Chamberlain

(1986) and Heckman (1990) is another example of thin set identi�cation. Many of the identi�cation

theorems given in Matzkin (2003, 2007, 2012) assume a normalization that otherwise unknown

functions take on known values at one point, such as zero. Such normalizations typically imply thin

set identi�cation. In practice, estimators of parameters that are only thin set identi�ed will usually

converge at slow rates. See Khan and Tamer (2010) and Lewbel (2019) for details regarding thin

set identi�cation.

One way to avoid thin set identi�cation is to assume that Assumption A3 holds at a mass point

p. Another way would be to assume that Assumption A3 holds for all pointsp in some convex

positive measure subset of 
p. However, this is an additional strong high level assumption that

could be di�cult to verify.

To avoid issues associated with thin set identi�cation, we now give a third alternative assumption

for obtaining identi�cation. A disadvantage of this identi�cation condition is that it requires a large

support assumption onP. However, unlike identi�cation at in�nity or other thin set identi�cation

arguments, here the large support assumption is only needed to avoid the presence of boundary

terms in a change of variables argument.

For a given function  j , de�ne cj by

cj =
Z 1

0
:::

Z 1

0
 j [G (p)] p�1

1 :::p�1
j �1 p�1

j +1 :::p�1
J dp1:::dpJ (4)

ASSUMPTION A5: Assume 
 p is the positive orthant. G (p) is continuous for allp 2 
. All asj

are positive. For eachj 2 f 1; :::; Jg, we can �nd a continuous function j such that the constantcj

de�ned by equation (4) exists, is �nite, and non-zero.

Having 
 p be the positive orthant is the large support assumption. As noted above for As-

sumption A4, when p is prices we can replacep with p=y, so very low and very high incomes



support also requires that extremes in relative prices of goods be possible.

The assumption that all asj are positive is testable, using the estimated average derivatives with

respect to pj of M (p; s) relative to average derivatives ofM (p; t) (recalling that by Assumption

A2, all atj equal one). In our empirical application, theasj coe�cients will be sharing parameters

that are positive by construction.

Assumption A5 says we can �nd a continuous function j that makes the integral given by

equation (4) convergent. Note thatG (p) is identi�ed by G (p) = M (p; t), so knowing G, the



however, that the rate of convergence of the resulting estimator may depend on which identifying

assumptions hold.

4 The Collective Household Model of Consumption

We briey summarize Pareto e�cient collective household consumption models here, focusing on the



jointness of consumption. For each goodj , the household setsx j =zj equal to 1=asj . Having asj = 1

means goodj is not jointly consumed at all (this would be the case if all goods were private, or if

the individual lived alone), otherwise the smallerasj is, the more goodj is consumed jointly.

BCL show5 that the household's demand functions arising from the above optimization have the

form
pj zj

y
= ! j (p; s; y) =

KX

k=1

e� k
s (p; y)hk

j

�
as1p1; :::; asJ pJ ; e� k

s (p; y)y
�

j = 1; :::; J (6)

The function ! j (p; s; y) is the household's budget share demand function for goodj . hk
j is

household memberk's demand function for goodj , based on memberj 's utility function. e� k
s (p; y)

is memberk's resource share, that is, the fraction of the household's total budgety



Vermeulen (2015) (see also Bonke and Browning 2011).

With these assumptions, we can write the resulting BCL demand functions as

pj zj

y
= ! j (p; s; y) =

KX

k=1

� k
s (A sp)hk

j

�
Asp; � k

s (A sp)y
�

. (7)

where resource shares now have the simpler form� k
s (A sp). For each memberk who has a private

assignable good, we will index that good as goodk. The household demand functions of the private

assignable good simplify to

pkzk

y
= ! k (p; s; y) = � k

s (A sp)hk
k

�
Asp; � k

s (A sp)y
�

(8)

It will be important for some later results to note that utility maximization results in demand

functions that are homogeneous of degree zero inp and y (this is known as the absence of money

illusion), which means that equation (7) can be equivalently written as

pj zj

y
= ! j (p; s; y) =

KX

k=1

� k
s

�
As

p
y

�
hk

j

�
As

p
y

; � k
s

�
As

p
y

��
. (9)

and similarly for equation (8).

5 Identi�cation of the Collective Household Model

We now consider identi�cation of the collective household model given by equations (7) and, for

private assignable goods, (8). As with Theorem 1, we present a few alternative sets of identifying

assumptions each with relative advantages and disadvantages depending on context.

ASSUMPTION B1: Household budget share demand functions! j (p; s; y) for j = 1; :::; J are

given by equation (7), which for private assignable goods reduces to equation (8), where for all

(p; s; y) 2 
 p � 
 s � 
 y, the functions hk
j (p; y) and � k

s (p) are positive and continuous for each

memberk = 1; :::; K , and eachs 2 
 s. The consumption technology constantsasj are bounded and

strictly positive for each s 2 
 s and each goodj .

Assumption B1 essentially lays out the collective household model as discussed in the previous

section. The continuity conditions follow naturally from smooth utility and household bargaining
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or social welfare functions. Similarly, having the Barten coe�cientsasj be bounded and positive

must hold because it is impossible for every member of a household to consume more than the



and has nonzero derivatives with respect top:

M (p; s) = lim
y! 0

@!j (p; s; y) =@y

! j (p; s; y)2 =
@!ej (p; s; y) =@y

! ej (p; s; y)2

ASSUMPTION B4: Assume that 
 y includes (0;1). Assume there exists a private assignable

good j . Assume that for all (p; s) 2 
 p � 
 s (except possibly on a subset of measure zero), there

exists a real constantc such that the function M (p; s) de�ned by the following equation is �nite,



in Theorem 2 we do not assume a scale normalization, i.e., we do not yet impose Assumption A2.

Later we will use data on singles living alone, who therefore cannot share, to properly scale each

asj .

A notable feature of Theorem 2 is that it gets identi�cation from the demand functions of just

one or two goods that the household consumes. Since we can estimate household demand functions

for many goods, we can expect the Barten scales to be greatly over identi�ed in practice. Also,

these results do not require monotonicity of demands, which is useful because empirically the e�ects

of both p and y on budget shares can change signs.

Another feature of Theorem 2 is that the only constraint it places on the resource share functions

� k
s (p) is the minimal regularity given in Assumption B1. In particular, Assumptions B2 to B6 place

no additional constraints on the resource share functions, as can be seen by replacing each� k
s (p)

with any other suitably bounded regular functione� k
s (p) in the proof of Theorem 2.

To illustrate some of the above alternative identifying assumptions, consider the general case

of private assignable demand functions that are polynomials iny. More precisely, let goodk be

assignable to memberj , and assume the functionhk
j is an arbitrary L'th order polynomial in y, so

! j (p; s; y) = � j
s(A sp)

X L

`=0
eh`j (A sp) � j

s(A sp)`y`

for some functions



Given identi�cation of the Barten technology, our next goal is identi�cation of the relative values

of the resource share functions� k
s . De�ne the vector � st (p) to be the vector of elements� stj (pj )

de�ned by

� stj (pj ) =
pj

asj =atj

for somet 2 
 s chosen by the econometrician.

ASSUMPTION C1: Assume that 
 y includes a one sided neighborhood of zero, that there exists

a private goodj that is assignable to some household memberk, and for that good j the budget

share function! j (s; � st (p) ; 0) is �nite and nonzero for all (p; s) 2 
 p � 
 s.

ASSUMPTION C2: Assume that 
 y includes (0;1), that there exists a private good j that is

assignable to some household memberk, and for that goodp; s) 2 
 p � 
 s �( j y



in Theorem 3 uses just the demand functions of at most two goods for each household member.

Since the demand functions for many goods are observed, as with Theorem 2 we can in general

expect substantial overidenti�cation, based on information using multiple goods that the household

consumes. Another limitation of Theorem 3 relative to the earlier generic identi�cation literature

(albeit a restriction with a great deal of theoretical precedent and empirical support, as discussed

earlier) is our assumed restriction that the resource share function not depend ony.

Identi�cation of relative values of resource shares does not su�ce to answer some questions

of economic signi�cance. In particular, as stressed by Dunbar, Lewbel, and Pendakur (2013),

identi�cation of poverty rates and of relative bargaining power of household members requires

identifying the levels of resource shares, not just their relative values.

Therefore, for the last part of this section, we consider using additional information to obtain

identi�cation of the entire model, including levels of resource shares, levels of Barten scales, and

the demand functions of each household member.

ASSUMPTION D1: For each household memberk = 1; :::; K � 1 assume there exists a private

assignable good, which without loss of generality denote as goodk. Assume that we observe singles

of member type k living alone, and that the demand functions for these assignable goods, the

functions hk
k , are the same whether a member of typek is in a collective household or not.

To identify the levels of resource shares, BCL assume that we can observe singles of every

household member typek = 1; :::; K , and that their demand functions for all goods remain the

same whether inside or outside a collective household. Assumption D1 considerably weakens the

BCL assumptions, by only requiring that we observe singles ofK � 1 member types, and that only

one good for each type needs to have a demand function that doesn't change when in a collective

household.7 However, Assumption D1 is stronger than BCL in one sense, which is that it requires

existence of some private assignable goods.

THEOREM 4: Let the Assumptions of Corollary 1 hold for alls 2 
 s, and let Assumption D1

hold. Let either Assumption C1, C2, or B6 hold. Then the entire model is identi�ed.

What we mean by the entire model being identi�ed in Theorem 4 is that all the Barten scales

7Note that when we say the demand function doesn't change, we only mean the functionshk
k (which are de-

rived from individual k's utility function) stay the same. Actual consumption quantities as functions of prices and
total expenditures will di�er, because within the collective household, each functionhk

k is evaluated at shadow
prices and a shadow budget, rather than market prices and the single's actual budget.
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asj , all the resource share functions� k
s (p), and all the demand functionshk

j (p; y) are identi�ed.

In our application, we haveK



Here bhk (p) and chk (p) are price indices de�ned as

ln[bhk (p)] = (lnp) 0� hk ; (11)

chk (p) = chk
0 + (lnp) 0� hk +

1
2

(lnp)� k0lnp; (12)

� hk , � hk , and � k areJ -vectors of preference parameters, �k is aJ � J matrix of preference parameters

 k
jj 0 having rank J � 1, and chk

0 is a scalar parameter which we set to equal to zero based on the

insensitivity reported in Banks et al. (1997). By de�nition, budget shares must add up to one,

i.e., 10
J ! hk = 1 for all p=y, where 1J is a J -vector of ones. This, in turn, implies that 10J � hk = 1,

10
J � hk = 0, 10

J � k = 0, and � k01J = 0 J , where 0J is a J -vector of zeros. Slutsky symmetry requires

that � k be a symmetric matrix.

As the indices above show, we let the parameter vectors� hk and � hk vary by householdh as

well as by individual k. In particular, we specify these parameter vectors by

� hk = � k
0 +

M �X

m=1

� k
mdhk

m;� (13)

� hk = � k
0 +

M �X

m=1

� k
mdhk

m;� ; (14)

wheredhk
m;� and dhk

m;� are observed demographic characteristics, andM � and M �



� m =
exp(� m 0s)

1 + exp(� f 0s) + exp(� m 0s)
; (16)

where f denotes female andm denotes male, and the children's resource share is 1� � f � � m . If

there are no children in the household, then

� f =
exp(� f 0s)

1 + exp(� f 0s)
; (17)

and the husband's share is 1� � f . This is a commonly used functional form for imposing the

constraint that resource shares are positive and sum to one.

In the collective household literature, variabless that a�ect resource shares are called "distri-

bution factors." See, e.g., Browning, Bourguignon, Chiappori, and Lechene (1994), Browning and

Chiappori (1998). In our model, theses variables also a�ect the Barten parametersasj . Lewbel and

Pendakur (2019) call variables that a�ect both resource shares and sharing, "cooperation factors."

The vector s in our application consists of the di�erence in age between the wife and husband, the

di�erence in log income between the wife and husband8, number of children, the minimum age of

children less 5, the age of the wife less 39 (the average age of wives in the sample), and indicators of

whether the wife has some college education, and whether the husband has some college education.

With the Barten consumption technology, we obtain the following expression for the budget

shares of couples with one to four children:

! h
j (p; sh; yh) = � hf

s ! hf
j

�
Asp

� hf
s y

+ � hm
s ! hm

j

�
Asp
� hm

s y

0 58

+ (1 0 00� hf
s  00� hm

s )! hc
j

0

@ Asp�
1 0 00� hf

s 0 00� hm
s

�
y

1

A : (18)

Couples with no children have the same expression but with! hc
j (the budget share demand function

of children c for good j ) set equal to zero.



We next require one of Assumptions B2, B3, B4, B5, or B6 to hold. In our demand model,

Assumption B6 holds with L=2. Alternatively, it can be directly veri�ed that Assumption B3 holds

as well. Either su�ces for Theorem 2.

Next consider Corollary 1. This entails identi�cation of relative values ofAs from M (p; s).

This is most readily satis�ed with M (p; s) = chk (A sp). Applying Assumption A3 we get that

@M(p; s) =@pj at p = 1 is
P J

ej =1  k
jj 0asj for j = 1; :::; J , from which we can recover the relative values

of the asj . Note that the matrix of parameters  k
jj 0 is identi�ed from variation in p.

Finally, consider Theorems 3 and 4. Assumption C1 is in some ways a mild restriction, since it

only requires that budget shares, which should lie between zero and one, stay well bahaved even

when y goes to zero. However, some popular functional forms, including our QUAIDS model,

violate this assumption, because it's a polynomial in lny. The demand functions here do not satisfy

either Assumption C1 or C2, and so Theorem 3 identifying relative resource shares does not apply.

However, in this case we do not need Theorem 3, because we satisfy the assumptions of Theorem 4,



shoes for the household head, spouse(s), and children. The sum of expenditures on clothing and

shoes for each household member type (men, women, and children) are our private assignable

goods. Note that while the data include assignables for allK = 3 types of household members, our

identi�cation theory only requires observation ofK � 1 = 2 assignable goods. This provides over

identifying information.

We select households (single men, single women, and married couples) according to the following

criteria: (1) single women and men are restricted to be between 22 to 65 years old; (2) couples with

children aged 15 or over are excluded (since adult clothing purchases could be consumed by older

children); (3) households with members as students are excluded; (4) for married couples, households

with members over 50 are excluded; (5) observations where expenditures on four or more of the

six goods is zero are excluded; and (6) to mitigate the possible e�ects of outliers, we trim the

samples with respect to key variables (the budget share of each aggregate good and log real total

expenditure) by dropping observations in the lower and upper 1 percentile. After applying these

criteria, we are left with a sample consisting of 276 single women, 357 single men, and 1068 married

couples having from zero to four children.

Price data comes from the 2015 based Consumer Price Index (CPI) from e-sTat, the portal site

of o�cial statistics of Japan. The detailed construction of price indexes for each aggregate good is

reported in Appendix B of the Supplemental Appendix.

7.2 The Estimator for Singles

The demand functions for householdsh consisting of just a single man or a single woman are given

by equation (10). Such households have eitherk = f if the householdh is a single woman ork = m

if the householdh is a single man. In this subsection we describe how these demand functions for

singles are estimated. The demand functions and associated estimators for households consisting

of multiple members are given in the next subsection.

For householdsh consisting of singles, we append aJ -vector valued additive error term Uhk

(consisting of elementsU jhk ) to equation (10).10 We assume thatUhk are uncorrelated across

households. Adding up requires 10J Uhk = 0, which implies that nonzero correlations must exist

among the elements of eachUhk , that is, within households across goodsj . Budget share demand

equations are estimated using GMM, allowing for arbitrary correlations in the errors across goods.

10Additive errors can either be rationalized as measurement errors in budget shares, or by imposing restrictions
on preference heterogeneity as in Lewbel (2001).
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Let ujhk
�
� k

�
= U jhk denote! jhk minus the j 'th element of the right hand side of equation (10),

where � k is the vector of all the parameters in that equation. Note thatujhk
�
� k

�
is implicitly a

function of ! jhk and of all the regressors in the model. The moments used for GMM estimation take

the form E
�
ujhk

�
� k

�
� hk

�
= 0, with � hk being a vector of covariates as de�ned below. To impose

the adding-up constraints we apply the standard practice of dropping one demand equation, and we

recover the estimated parameters for that last equation using the adding-up constraints. The choice

of which demand equation to drop is numerically irrelevant, because by the adding-up constraints,

the parameters of the dropped equation are all deterministic functions of the parameters in the

remaining equations. The full set of moments for estimating the model of singles of typek is

thereforeE
�
ujhk

�
� k

�
� hk

�
= 0 for j = 1; :::; J � 1. Letting uhk

�
� k

�
be the J � 1 vector of elements

ujhk
�
� k

�
for j = 1,...,J � 1, we equivalently write these moments asE

��
I J �1 
 � hk

�
uhk

�
� k

��
= 0.

The set of covariates� hk (for single householdsh) consists of region dummies, age, log relative

prices, log real total expenditure (de�ned as the log of total expenditures divided by a Stone price

index computed for our six nondurable goods) and its square, and the product of log real total

expenditures with the home ownership dummy and with log prices. The number of moments

therefore consists of�



99th percentile. We shift the plots for couples with 0-4 children to the left in these �gures to

make them comparable to the singles plots. We �nd that food (at home and eating-out), utility,

and communication are necessities while clothing and shoes, transportation, and entertainment are

luxuries. Single women have a steeper Engel curve slope for clothing and shoes compared to other

households. Couples with 0-4 children have a steeper Engel curve slope for entertainment compared

to singles. Elasticity estimates for single women and single men are reported in Table 1 in Appendix

D of the Supplemental Appendix.

7.3 The Joint Model

Unlike singles, who have budget share equations for six goods, couples have budget shares! h
j (p; sh; yh)

for seven or eight goods, since they include men's clothes, women's clothes, and (when present) chil-

dren's clothes as separate goods, while singles just consume one type of clothing.

The parameters of the joint model consist of all the QUAIDS parameters of budget shares,! hf ,

! hm , and ! hc, the Barten scalesAs, and the parameters of the sharing rules� hf
s and � hm

s . We jointly

estimate all the parameters of the model using data from both singles and couples.

We have 150 preference parameters (5� 17 - 10 = 75 symmetry constrained QUAIDS parameters

for each of men and women). We also have 6 Barten scale parameters and 16 sharing rule parameters

(the 7 listed above plus the constant for each of men and women); this gives a total of 172 parameters.

We have 335 instruments (for each of the 5 goods there are 22 instruments for single men, 22 for

single women, and 23 for couples), giving a maximum degrees of freedom of 163 for the most general

model. The GMM weighting matrices for singles,W f and W m , are obtained from the QUAIDS

estimates for singles in the previous subsection. The weighting matrix for children,W c is derived

using two-step GMM on the full system, starting with an initial identity weighting matrix. The

GMM criterion is:

min
�

(vc(� )0W cvc(� ) + vf (� )0W f vf (� ) + vm (� )0W mvm (� )); (20)

where � is the full parameter vector of the joint model and the instrument matrices are de�ned as

in equation (19).
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Table 1: Summary Statistics, JHPS/KHPS 2004 - 2016

SingleMen Single Women
Couples with

0 child 1 children 2 children 3 - 4 children
Number of observations 1,180 822 375 706 1,364 395
Number of unique households 357 276 192 282 456 138
Household income (thousand yen) 3460.66 . 7520.87 5910.11 6408.41 6400.97
Total expenditures (January, thousand yen) 121.20 113.33 181.33 175.14 191.00 202.10
Budget share (food) 0.45 0.40 0.34 0.35 0.36 0.38
Budget share (clothing) 0.05 0.08 0.09 0.08 0.08 0.07
Budget share (communication) 0.11 0.11 0.12 0.13 0.12 0.13
Budget share (entertainment) 0.18 0.16 0.23 0.22 0.23 0.22
Budget share (transportation) 0.08 0.09 0.09 0.09 0.07 0.07
Budget share (utility) 0.13 0.15 0.13 0.14 0.14 0.14
Husband clothing&shoes share - - 0.04 0.02 0.01 0.01
Wife clothing&shoes share - - 0.05 0.02 0.02 0.01
Children clothing&shoes share - - 0.00 0.03 0.04 0.04
Female age - 47.09 38.29 37.79 38.37 38.26
Female unemployed - 0.11 0.10 0.23 0.22 0.22
Female college graduate or above - 0.20 0.07 0.10 0.10 0.07
Female some college - 0.40 0.33 0.30 0.28 0.21
Male age 48.05 - 39.20 39.12 39.89 39.29
Male unemployed 0.07 - 0.01 0.00 0.00 0.00
Male college graduate or above 0.19 - 0.07 0.10 0.07 0.10
Male some college 0.46 - 0.39 0.27 0.26 0.30
Child 1 age - - - 6.80 9.72 11.41
Child 2 age - - - - 6.50 8.68
Child 3 age - - - - - 5.34
Child 4 age - - - - - -
Child average age - - - 6.79 8.11 8.33
Home ownership





Table 4: Sharing Rule Implications

Household Characteristics Wife's resource share
All households

Benchmark 0.21
Wife with some college education 0.45
Husband with some college education 0.32
Home owner 0.19

Notes: The benchmark households (row 1) are ones in which neither the wife nor the husband has college education

and are renters with median total expenditure. Row 2 shows the wife's resource share in households that are similar

to the benchmark households but in which the wife has college education. Row 3 shows the wife's resource share in

households that are similar to the benchmark households but in which the husband has college education. Row 4

shows the wife's resource share in households that are similar to the benchmark households but are home owners.

Table 5: Implications of Estimates

Couples with
0 child 1 child 2 children 3 - 4 children

Wife's resource share 0.51 0.30 0.24 0.17

Wife's equivalent expenditure 121.66 69.79 59.71 45.15
Husband's equivalent expenditure 119.80 56.47 62.58 69.09
Children's equivalent expenditure - 107.47 126.26 148.15
Actual couple's expenditure 181.82 173.31 183.40 192.64
Indi�erence scale for women 0.67 0.40 0.32 0.23
Indi�erence scale for men 0.66 0.33 0.34 0.36
Indi�erence scale for children - 0.62 0.69 0.77
Scale economy, R 0.33 0.35 0.35 0.36
Number of Observations 379 704 1369 392

Notes: Values are in mean. Equivalent budget share is the budget share of the wife (husband) if she (he) is endowed

with the fraction of resources and faced with shadow prices (market prices discounted by the Barten scales). The

equivalent expenditure is the expenditure that the wife (husband) needs to obtain the same private good equivalents

in marraige if she (he) is living alone, endowed with the fraction of resources in marriage and faced with market

prices. Scale economy means it would cost the couple R percent more to buy the (private equivalent) goods they

consumed if there had been no shared or joint consumption. The expenditures are in thousand yen.
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(which constitutes over three fourths of all household consumption in the JPSC).

As another check on our estimates, we do our own comparison (in Appendix C of the Sup-

plemental Appendix) to self-reports of individual private consumption in the JPSC. Overall, our

estimates are comparable to the JPSC reports, however, by failing to allocate shared goods, we

�nd that the JPSC appears to underestimate the relative contribution of wives vs. husbands to

children's resources.

Estimates of Barten scales are reported in Panel B of Table 2. Clothing and shoes are our private

assignable goods, so their Barten scales equal one. We �nd that food and communication are highly



the private good equivalent quantities for each household memberk for each goodj are given by

xhk
j =

! hk
j

asj
� hk

s yh (21)

and relative economies of scale to consumptionR are de�ned as

R =

P
j pj

P
k xhk

j

yh
� 1 =

P
j pj ((

P
k xhk

j ) � zh
j ))

P
j pj zh

j
: (22)

BCL de�ne a member's indi�erence scale to be the cost (as a fraction ofy), at market prices, of

the cheapest bundle of goods that gets memberk to the same utility level (i.e., the same indi�erence

curve over goods) that the member attains in the household by consuming his or her own vector of

private good equivalents. LeteV k denote the QUAIDS indirect utility function of member k. The

indi�erence scaleIS hk for each memberk is de�ned as the solution to

eV k

�
p=y
IS hk

�
= eV k

�
Asp=y

� hk
s

�
: (23)

Table 5 reports the estimates of members' private good equivalent expendituresxk , indi�erence

scalesIS k , and the overall economies of scaleR. Row 6 in Table 5 reports the indi�erence scale for

wives. This indi�erence scale can be interpreted as the fraction of the household's total expenditures

that a wife would need when living alone (i.e., as a single) to attain the same indi�erence curve

over goods that she reaches as a member of the household. The table shows that, on average,

wives would require 67% of the couple's total expenditures to be as well o� living alone as she is

in the couple, when there are no children. This drops to only 23% in families with 3 to 4 children,

reecting how much less, relatively, women consume when children are present. The corresponding

numbers for husbands (in row 7 of Table 5) are 66% without children, dropping to 36% when 3 to

4 children are present.

The interpretation of an indi�erence scale as the relative cost of living alone is not relevant

for children, however, indi�erence scales for children still provide a measure of the savings in costs

of children that households attain by sharing consumption, and it is meaningful to compare the

relative values of children's indi�erence scales in households of di�erent compositions. Children's

indi�erence scales are reported in row 8 of Table 5.
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The second to the last row in Table 5 gives household's overall economies of scale. On average,

it ranges between 0.33 to 0.36 across di�erent household types. This implies that it would cost

families 33% to 36% more to buy the (private equivalent) goods they consumed if there had been

no shared or joint consumption.

8 Conclusions

We provide theorems for point identifying a general class of semiparametric models that are applica-

ble to a variety of applications, including continuous consumer demand, production functions, and

multiple index models. We then extend these results to show point identi�cation for a large class

of collective household models, which previously had only been shown to be generically identi�ed.

Moreover, we do so in a model that allows goods to be partly shared, including identifying the

demand functions and resource shares of children.

We apply our model to Japanese data consisting of single men, single women, and married

couples with zero to four children. Our �ndings have important policy implications for the analysis

of individual welfare, particularly children's welfare, in multi-person households. For example, one

potential application of our identi�cation and resulting estimates could be to calculate appropriate

levels of compensation for children, to maintain their standard of living, if parents separate or a

parent dies. Also, since we identify (ordinally) the utility functions of children and their parents,

the framework can be used to evaluate the impact of welfare programs (e.g., taxes or subsidies) on

the individual welfare of mothers, fathers, and children.
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A Appendix

A.1 Appendix A: Proofs

PROOF of LEMMA 1: The function G (p) is identi�ed for all p 2 
 p by G (p) = M (p; t), where

t is de�ned in Assumption A2. Also, the functionsmj (p; s) and gj (p) are identi�ed (where the

derivatives de�ning these functions exist) for allp 2 
 p by construction because they are derivatives

of identi�ed functions.

Now let Assumption A3 hold. Sincemj (p; s) = gj (as1p1; :::asJ pJ ), we have that

� j (�; ep; s) = asj
gj (as1ep1; :::asJ epJ )
gj (� 1ep1; :::� J epJ )

for j = 1; :::; J (24)

Since this mapping is a contraction, by the Banach �xed point theorem there exists is a unique�

such that � = � (�; ep; s). This unique � is identi�ed, because the value of the function� (�; ep; s)

is identi�ed. But by equation (24), as = � (as; ep; s), and therefore the unique identi�ed� is the

desired coe�cient vector as.

Next, suppose instead that Assumption A4 holds. For allp in the neighborhood of zero given

by Assumption A2, let mj (p; s) = @M(p; s) =@pj and let gj (p) = @G(p) =@pj (these can be one

sided derivatives). These functions are identi�ed by construction given thatM (p; s) and G (p)

are identi�ed. Then, it follows from equation (24) that as is identi�ed by asj = � j (0; 0; s) =

limp! 0 m (p; s) =gj (p) (where, e.g., this limit is from above ifp > 0).

Finally, given identi�cation of each as, the function G ( m Gma (



for each goodj ,

Csj =
Z 1

0
:::

Z 1

0
 j [G (as1p1; :::asJ pJ )] p�1

1 :::p�1
j �1 p�1

j +1 :::p�1
J dp1:::dpJ

=
Z 1

0
:::

Z 1

0
 [G (� 1; :::� J )]

as1

� 1
:::

as;j �1

� j �1

as;j +1

� j +1
:::

asJ

� J

d� 1

as1
:::

d� J

asJ

=
Z 1

0
:::

Z 1

0
 [G (� 1; :::� J )]

1
� 1

:::
1

� j �1

1
� j +1

:::
1

� J
d� 1:::d� J

1
asj

=
cj

asj

so asj is identi�ed for each s 2 
 s and j 2 f 1; :::; Jg by asj = cj =Csj .

PROOF of THEOREM 1: This follows immediately from Lemmas 1 and 2, noting that without

the normalization of Assumption A2, the coe�cientsasj in the proofs of Lemmas 1 and 2 correspond

to asj =atj for somet 2 
 s where the functionG (p) in these proofs corresponds toG (at1p1; :::atJ pJ )



j = k and we have

M (p; s) =
Z 1

0

�
� k

s (A sp)
� c �

hk
k

�
Asp; � k

s (A sp)y
�� c

yc�1 dy

Now do the change of variables� = � k
s (A sp)y

M (p; s) =
Z 1

0

�
� k

s (A sp)
� c �

hk
k (A sp; � )

� c
�

�
� k

s (A sp)

� c�1 d�
� k

s (A sp)

=
Z 1

0

�
hk

k (A sp; � )
� c

� cd� = G (A sp)

where the last equality above de�nes the functionG.

Now, if Assumption B5 holds then

M (p; s) =
Z 1

0

 
KX

k=1

� k
s (A sp)hk

j

�
Asp; � k

s (A sp)y
�
!

dy

=
KX

k=1

Z 1

0
� k

s (A sp)hk
j

�
Asp; � k

s (A sp)y
�

dy

Next do the change of variables� = � k
s (A sp)y in each of theK integrals above.

M (p; s) =
KX

k=1

Z 1

0
� k

s (A sp)hk
j (A sp; � )

d�
� k

s (A sp)

=
KX

k=1

Z 1

0
hk

j (A sp; � ) d� = G (A sp)

where the last equality above de�nes the functionG.

Finally, consider the case where B6 holds. Ifhk
j (p; y) =

P L
`=0  k

j` (p) (ln y)` for the private

assignablek = j , then

! j (p; s; y) = � j
s(A sp)

X L

`=0
 k

j` (A sp)
�
ln y + ln � k

s (A sp)
� `

Therefore � (p; s) = ( � j
s(A sp)j k

jL (A sp) j) �1 (using the fact that resource shares are positive), so

with M (p; s) = � (p; s) ! j (p; s; � (p; s)) we get

M (p; s) =

P L
`=0  k

j` (A sp)
�
� ln j k

jL (A sp) j
� `

j k
jL (A sp) j
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which is a function of just terms of the form k
j` (A sp), and so de�nesG.

PROOF of THEOREM 3:

By Corollary 1, the relative Barten technology parametersasj =atj and arj



we also identify all relative resource shares� k
s (A r p)=� k

t (A r p) by Theorem 3. For singles of type

k = 1; :::; K � 1, resource shares� k
t must equal one, so takingr = t we identify � k

s (p)=� k
t (p) = � k

s (p).

Alternatively, if Assumption B6 holds, thenhk
j (p; y) =

P L
`=0  k

j` (p) (ln (y )) ` , so the k
k` functions

are known. This, along with allasj being known fork = 1; :::; K � 1 means that resource shares� k
s

can be recovered from equation (8).

Finally resource shares sum to one, so given the resource share functions� k
s for all household

typess and membersk = 1; :::; K � 1, we identify the resource share functions for the last household

type K by � K
s (p) = 1 �

P K �1
k=1 � k

s (p).
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In addition to regional prices, the CPI dataset provides price data for each \designated city," that

is, each major city with a population of more than half million that is designated as such by order

of the Cabinet of Japan.2 Combining these city level prices using CPI weights, we construct price

indices for designated cities within each of the eight regions, except for the Shikoku region where

there is no designated city. Using each regional price index and the price indices for designated

cities, we additionally back out price indices for the areas outside each designated city in each

region. Thus, for each aggregate good, we obtain price data for 15 (8 regions� 2 (designated city

or not) � 1 (no designated city in Shikoku region)) combinations of regions and city sizes, which

we then assign to households in the JHPS/KHPS dataset.

In the food category, the CPI dataset has separate price indices for food-at-home and eating-

out. We construct household-level price indices for food using a Stone price index, by taking a

weighted average of the log of the price of eating-out and the log price of food-at-home, where the

weights are the household's food budget shares of eating-out and of food-at-home. By employing

each household's own within food relative consumption weights, this construction more accurately

reects the price for food faced by individual households than the total food index provided by the

CPI.

0.2 APPENDIX C: External Validation of Model Predictions

The estimated resource shares are unobserved, and may su�er from measurement error or estimation

error due to possible model misspeci�cation (see, e.g. Calvi et al. 2019). To verify our results, we





and Ishikawa 2013). By failing to allocate shared goods, the JPSC appears to underestimate the

relative contribution of wives vs. husbands to children's resources.



Table 1: Elasticities Estimates of Single Men and Women

Budget Elasticities
Single women Single men

Food 0.74 0.81
Clothing 1.45 1.20
Communication 0.78 0.76
Entertainment 1.45 1.53
Transportation 1.13 1.24
Utility 0.54 0.43

Uncompensated Price Elasticities (single women)
Food Clothing Communication Entertainment Transportation Utility

Food -1.01 0.21 -0.59 0.95 -0.04 -0.23
Clothing 0.71 -1.69 0.91 -6.26 4.36 0.83
Communication -2.57 0.97 -0.37 1.61 0.56 -1.05
Entertainment 2.77 -4.01 0.98 -3.07 -0.27 3.45
Transportation -0.30 5.48 0.77 -0.53 -5.67 4.08
Utility -1.37 1.03 -0.92 4.51 2.25 -5.14

Compensated Price Elasticities/Slutsky Matrix (single women)
Food Clothing Communication Entertainment Transportation Utility

Food -0.72 0.29 -0.51 1.08 0.03 -0.13
Clothing 1.35 -1.44 1.11 -5.92 4.56 1.06
Communication -2.33 1.05 -0.26 1.74 0.64 -0.96
Entertainment 3.50 -3.78 1.21 -2.69 -0.06 3.72
Transportation 0.18 5.63 0.91 -0.28 -5.48 4.25
Utility -1.25 1.07 -0.89 4.58 2.29 -5.05

Uncompensated Price Elasticities (single men)
Food Clothing Communication Entertainment Transportation Utility

Food -1.29 -0.31 -0.42 1.60 0.18 -0.53
Clothing -2.44 -0.42 -0.10 1.21 -0.21 0.13
Communication -1.85 -0.25 -1.67 2.89 -0.02 0.46
Entertainment 3.69 -1.92 1.56 -4.30 -0.04 1.18
Transportation 0.99 5.38 -0.05 -0.21 -3.82 -1.27
Utility -2.11 0.60 0.16 -1.27 2.67 -0.45

Compensated Price Elasticities/Slutsky Matrix (single men)
Food Clothing Communication Entertainment Transportation Utility

Food -0.93 -0.25 -0.34 1.76 0.26 -0.44
Clothing -1.87 -0.28 0.05 1.51 -0.07 0.29
Communication -1.59 -0.19 -1.57 3.03 0.05 0.53
Entertainment 4.50 -1.76 1.78 -3.89 0.15 1.41
Transportation 1.60 5.49 0.11 0.11 -3.63 -1.10
Utility -2.01 0.62 0.18 -1.22 2.69 -0.39
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