form M (p; s) = $G(a_{s1}p_1; \ldots; a_{s}p_J)$ where the function M is known or identi ed, e.g., M could be a conditional mean function estimated by nonparametric regression. We wish to point identify, up to normalization, the vector of coe cients $a_s = (a_{s1}; ...; a_{sJ})$ for each value thats can take on.

Note that this is not a single linear index model. Many results exist for identifying coe cients in linear index models, i.e., models that are functions $\alpha i_1 p_1 + ... + a_j p_j$. But those results are not applicable to this context. Here each appears separately, and generally nonlinearly, in the function G. Still, as we show below, multiple (rather than single) linear index models do form a special case of the models we consider, so our results add to the existing literature on identi cation of multiple linear index models.

We provide three di erent assumptions that su ce to point identify the coe cients a_{sj} for $j = 1; \ldots; J$. Each assumption has di erent strengths and weaknesses, so di erent ones will be more or less useful depending on context. An attractive feature of these identication results is that they do not impose any monotonicity on the functionG.

We then extend these results to show point identi cation of a general set of collective household consumption models. There is a long literature on the identication and estimation of collective household models of consumption. These are models of households with multiple members, each of whom maximizes a utility function, subject to their claims on the household's resources and a household budget constraint. Objects of particular interest are resource shares, dened as the fractions of household resources spent on each family member. Virtually all of the identi cation results in this collective household model literature either point identify speci c functional forms, or point identify only a subset of the model's features, or only establishes either set or generic identi cation rather than point identi cation.

Generic identi cation of a model means that the model is usually point identi ed, but there can exist situations where point identi cation fails. More formally, generic identi cation says that in the set of all possible data generating processes that satisfy the model's assumptions, the subset for which point identi cation fails has measure zero. See McManus (1992) and Lewbel (2019) for more details regarding the formal de nition of generic identi cation.

The well known collective household identi cation results of Chiappori and Ekeland (2006, 2009) and earlier authors, showing nonparametric identi cation up to unknown levels for resource shares, are generic identi cation theorems. As a result, there exist functional forms where point identi cation fails. For example, their model is not nonparametrically point identi ed if household members have Cobb-Douglas preferences. Moreover, as is typical for generic identi cation results,

2

equation (1) holds where eacla_{si} captures the non-neutral technical eciency of input j, and/or the quality of input j , by a rm with characteristics s. More generally, thep in M (p; s) could be a vector of both input and output prices in a multiple output production process, with signs α_{si} determining which elements are inputs and which are outputs in a rm with characteristics. A large literature exists on modeling heterogeneity in non-neutral eciency in both macro, as in Basu and Fernald (1997), and industrial organization, as in Ackerberg, Caves, and Frazer (2015), and Gandhi, Navarro, and Rivers (2020).

3. Multiple linear index models. These can be constructed as a special case of our model. Suppose we add the constraint that alb_{si} and p_i are strictly positive (this constraint will apply in our empirical application). Then we can equivalently write equation (1) as M (p; s) = \mathbb{G} (In a_{s1} + In p_1 ; :::; In a_{s1} + In p_1). Sinces has nite support we can next equivalently replace each In a_{sj} with a saturated model lna_j (s) = $\frac{1}{1}$ S whereS is a vector of binary variables indicating each possible value in the support ofs. We then getM (p; s) = $G \frac{a}{2}S + \ln p_1; \dots; \frac{a}{2}S + \ln p_J$, which is a multiple linear index structure. Multiple linear index models are popular structures in statistics and econometrics, with estimators including Ichimura and Lee (1991), Horowitz (1998), Xia, Tong, Li, and Zhu (2002), Xia (2008), Donkers and Schafgans (2008), and Ahn, Ichimura, Powell, and Ruud (2018). The restriction that each linear index has one explanatory variable that appears only in that index, with a coe cient of one (corresponding to the lnp_j terms in <mark>G</mark>) appears as Assumption 3a in Donkers and Schafgans (2008). They observe this is one way to satisfy some necessary conditions for identi cation that appeared previously in the literature. Note that, in addition to the constraint that all a_{si} and p_i in our model be strictly positive, the multiple linear index literature mostly focuses on applications where regressors are continuous, rather than our opposite extreme where onlyp is continuous.

4. Collective Household Models. The modern literature on Pareto ecient collective household models begins with Becker (1965, 1981) and Chiappori (1988, 1992). An important series of papers in this literature establishes that, from only observing the demand functions of households, one cannot point identify resource shares (a resource share is the fraction of a household's total resources that are spent on the utility of any one household member). However, one can generically identify the marginal e ects of policy variables on resource shares. Equivalently, each resource share is only point identied up to an unknown location constant. See, e.g., Browning, Bourguignon, Chiappori, and Lechene (1994), Browning and Chiappori (1998), Vermeulen (2002), and Chiappori

4

and Ekeland (2006, 2009). Prominent papers that make use of these identi cation results include Chiappori, Fortin, and Lacroix (2002), and Blundell, Chiappori, and Meghir (2005).

By adding additional assumptions, more recent papers either generically identify the entire model, including the levels of resource shares, e.g., Browning, Chiappori, and Lewbel (2013), or point identify some features of the model (such as resource shares without price e ects), e.g., Lewbel and Pendakur (2008), Bargain and Donni (2012), Dunbar, Lewbel, and Pendakur (2013), and Penglase (2019). Still other papers impose additional parametric restrictions to obtain point identi cation, e.g., Couprie, Peluso, and Trannoy (2010) and Lise and Seitz (2011).

None of the above results accomplish our goal, which is to provide sucient conditions to semiparametrically point identify (not just generically identify) an entire collective household model, including resource share levels and price e ects.

One large, general class of collective household models in the literature is based oas wning, Chiappori, and Lewbel (2013), which we will hereafter refer to as BCL. All but a handful of the papers cited above caasbe cast as special cases of BCL. BCL yields demands that caasbeswritten as a system of equations, each having a form resembing

$$
M (p; s; y) = G (A_s p; s (A_s p) y)
$$
 (2)

where M is quantity demand, G and $\,$ are unknown functions, p is a vector of observed prices, is observed total expenditures, s is a resource share function, and tha_{si} terms on the diagonal of $A_{\rm s}$

3 Semiparametric Coe cient Identi cation

Let $a_s = (a_{s1};...; a_{sJ})$ be a J-vector of coe cients we wish to identify. Let A_s be the J by J diagonal matrix that has the vector a_s on the diagonal. Let P = (P_1 ; ...; P_J) be a J-vector of continuous covariates (possibly also including some mass points) and late a discrete covariate (or vector of covariates). Assume we can identify a functioM $(P; S)$, e.g., M $(P; S)$ might be a conditional mean, conditional density, or conditional quantile function that we could consistently estimate. The goal is to identify the unknown vector of coe cients $a_s = (a_{s1}; \dots; a_{s1})$ in the model

$$
M (p; s) = G (as1p1; ..., asJpJ) = G (Asp)
$$
 (3)

for some unknown functionG.

In this section we provide three alternative sets of conditions, each of which suce for point identi cation of the vector of coe cients (a_{s1} ; ...; a_{s1}) for each values that S can equal. Each has relative advantages and disadvantages. None, however, require monotonicity of the funct ConThe following two assumptions are common to all three sets of assumptions.

ASSUMPTION A1: Let the support of (P; S) be $_{p}$ s. For each $(p; s)$ 2 $_{p}$ s, equation (3) holds for some unknown functiorG and some vector of constants $s = (a_{s1}; \dots; a_{s1})$. The function M $(p; s)$ is identi ed for all $(p; s)$ 2 $_p$ s.

ASSUMPTION A2: Assume for some $2 \simeq s$ that $a_{tj} = 1$ for $j = 1$; :::; J.

Assumption A1 essentially just lays out the model. Assumption A2 is a scale normalization. Assumption A2 can be made without loss of generality (as long $a_{\overline{a}}$ is not identically zero), because we can simply rede ne the functio G to make $a_{ti} = 1$, by replacing G with G de ned by $G(p) = G(a_{t1}p_1;...; a_{tJ}p_J)$ and replacing each a_{sj} with a_{sj} de ned by $a_{sj} = a_{sj} = a_{lj}$. Note, however, that the choice of normalization can a ect economic interpretation of the functionG and the a_{si} \cos cients. 4

Our rst alternative identifying assumption is the following

ASSUMPTION A3: AssumeG(p) is continuously di erentiable. Let m_i (p; s) = $\mathcal{Q}M(p; s) = \mathcal{Q}_i p$

⁴In our collective household application, the a_{sj} coe cients are measures of how much each goo d is shared (consumed jointly by multiple members) in a household of types. There it will be appropriate to normalize a_{ti} to equal one for singlest (people who live alone), and who therefore cannot be sharing. See Lewbel (2019) for more on the economic implications of scale normalizations.

and let g (p) = $@$ Gp) = $@_p$ For any J-vector $=$ ($_{-1}$; ::; $_{J}$), de ne the J-vector valued function (; p; s) as having the elements

$$
j (; p ; s) = \frac{m_j (p ; s)}{g_j (+_1 p_1; ...;) p_J)}
$$
 for $j = 1; ...; J$

For eachs 2 s, assume there exists $p = 2$ p such that Asp 2 p and j (; p; s) is a contraction on a.

Assumption A3, is a high level assumption, which may therefore be hard to verify in practice. However, in the special case of multiple linear index models, Assumption A3 corresponds to uniquely recovering index coe cients from derivatives of M, and so relates to the identi cation conditions given in Xia (2008) and Donkers and Schafgans (2008).

An alternative to Assumption A3 is Assumption A4, which is more restrictive than A3, but is a much lower level assumption and hence may be simpler to verify in some applications.

ASSUMPTION A4: Assume _p includes a (possibly one sided) neighborhood of zero, and that G (p) is continuously dierentiable for all p in that neighborhood of zero. Assume for eagh = 1; :::; J that $@$ Gp) = $@$ _i p(or the corresponding one sided derivatives) does not equal zero when 0.

Assumption A4 exploits how our model simpli es at the point wher $p = 0$. This is a method of identi cation that is also used by Matzkin (2003, 2012) and Lewbel and Pendakur (2017). Applying Assumption A4 whenp is prices requires the one sided version of Assumption A4, since prices cannot be negative. In practice, this identi cation would require some probability of observing arbitrarily low prices (so the support op contains values in the neighborhood of zero). However, both ordinary consumer demand models and collective household models are linearly homogeneous in prices total expenditures y. Therefore, it is only $p=$ y that needs to include a one sided neighborhood of zero, and the presence of very wealthy consumers can insure that some observed valupsyore very close to zero.

De ne the random vector V by V = (V₁; ...; V_J) where V_j = $a_{sj}P_j$. Let \vee denote the support of V.

LEMMA 1: Let Assumptions A1 and A2 hold. If either Assumption A3 or Assumption A4 also holds then the coe cients a_{s1} ; :::; a_{sJ} and the function G(v) are point identi ed for all v 2 v_{v} and s 2 s.

The identication in Lemma 1 is what Khan and Tamer (2010) call "thin set" identication. Thin set identication is when identication is based on a measure zero subset of the support of the data. In this example, identi cation is based either on the point that makes Assumption A3 hold, or the point $p = 0$ for Assumption A4. Either such point is observed with probability zero if P is continuous. The more well known concept of "identication at innity" as in Chamberlain (1986) and Heckman (1990) is another example of thin set identication. Many of the identication theorems given in Matzkin (2003, 2007, 2012) assume a normalization that otherwise unknown functions take on known values at one point, such as zero. Such normalizations typically imply thin set identi cation. In practice, estimators of parameters that are only thin set identi ed will usually converge at slow rates. See Khan and Tamer (2010) and Lewbel (2019) for details regarding thin set identi cation.

One way to avoid thin set identication is to assume that Assumption A3 holds at a mass point p. Another way would be to assume that Assumption A3 holds for all point pin some convex positive measure subset of _p. However, this is an additional strong high level assumption that could be di cult to verify.

To avoid issues associated with thin set identi cation, we now give a third alternative assumption for obtaining identi cation. A disadvantage of this identi cation condition is that it requires a large support assumption onP. However, unlike identi cation at in nity or other thin set identi cation arguments, here the large support assumption is only needed to avoid the presence of boundary terms in a change of variables argument.

For a given function j , de ne q by

$$
G_j = \sum_{0}^{Z} \dots \sum_{j}^{Z} \dots \sum_{j}^{Z} [G(p)] p_1^{-1} ... p_j^{-1} p_{j+1}^{-1} ... p_j^{-1} dp_1 ... dp_j
$$
 (4)

ASSUMPTION A5: Assume p_{p} is the positive orthant. G (p) is continuous for allp 2 $\,$. All $\,$ a $_{\rm{sj}}$ are positive. For each 2 f 1; :::; Jg, we can nd a continuous function $\frac{1}{1}$ such that the constantcg dened by equation (4) exists, is nite, and non-zero.

Having $_{p}$ be the positive orthant is the large support assumption. As noted above for Assumption A4, when p is prices we can replac φ with $p=y$, so very low and very high incomes (corresponf147re5T2.99toisofon

support also requires that extremes in relative prices of goods be possible.

The assumption that all a_{sj} are positive is testable, using the estimated average derivatives with respect to p_i of M (p; s) relative to average derivatives oM (p; t) (recalling that by Assumption A2, all a_{ti} equal one). In our empirical application, thea_{si} coe cients will be sharing parameters that are positive by construction.

Assumption A5 says we can nd a continuous function _i that makes the integral given by equation (4) convergent. Note that G(p) is identi ed by $G(p) = M(p; t)$, so knowing G, the

however, that the rate of convergence of the resulting estimator may depend on which identifying assumptions hold.

4 The Collective Household Model of Consumption

We brie y summarize Pareto e cient collective household consumption models here, focusing on the BCL model. Until recently, virtually all collective household models divided goods into two types:

jointness of consumption. For each good the household set $\mathbf{x}_j = z_j$ equal to $\mathbf{t} = a_{sj}$. Having $a_{sj} = 1$ means good is not jointly consumed at all (this would be the case if all goods were private, or if the individual lived alone), otherwise the smalle a_{sj} is, the more good is consumed jointly.

BCL show⁵ that the household's demand functions arising from the above optimization have the form

$$
\frac{p_j z_j}{y} = 1_j (p; s; y) = \sum_{k=1}^{M} e_s^k(p; y) h_j^k \ a_{s1} p_1; \dots; a_{sJ} p_J; e_s^k(p; y) y \qquad j = 1; \dots; J
$$
 (6)

The function !_j (p; s; y) is the household's budget share demand function for goqd $\,h_{j}^{k}\,$ is household membe $\mathbf k$'s demand function for goo $\mathbf q$, based on membej 's utility function. $e_\mathbf s^\mathbf k(\mathsf p; \mathsf y)$ is memberk's resource share, that is, the fraction of the household's total budget

Vermeulen (2015) (see also Bonke and Browning 2011).

With these assumptions, we can write the resulting BCL demand functions as

$$
\frac{p_j z_j}{y} = !_j (p; s; y) = \sum_{k=1}^{N} k_s (A_s p) h_j^k A_s p; k_s (A_s p) y .
$$
 (7)

where resource shares now have the simpler form $\langle A_s p \rangle$. For each memberk who has a private assignable good, we will index that good as good The household demand functions of the private assignable good simplify to

$$
\frac{p_{k}z_{k}}{y} = !_{k}(p; s; y) = \, \frac{k}{s}(A_{s}p)h_{k}^{k} \, A_{s}p; \, \frac{k}{s}(A_{s}p)y \tag{8}
$$

It will be important for some later results to note that utility maximization results in demand functions that are homogeneous of degree zero prand y (this is known as the absence of money illusion), which means that equation (7) can be equivalently written as

$$
\frac{p_j z_j}{y} = 1_j (p; s; y) = \sum_{k=1}^{M} k_s A_s \frac{p}{y} h_j^k A_s \frac{p}{y}; k A_s \frac{p}{y} .
$$
 (9)

and similarly for equation (8).

5 Identication of the Collective Household Model

We now consider identi cation of the collective household model given by equations (7) and, for private assignable goods, (8). As with Theorem 1, we present a few alternative sets of identifying assumptions each with relative advantages and disadvantages depending on context.

ASSUMPTION B1: Household budget share demand functions $(p; s; y)$ for $j = 1; \dots; J$ are given by equation (7), which for private assignable goods reduces to equation (8), where for all (p; s; y) 2 $_p$ s y, the functions h_j^k (p; y) and $_s^k(p)$ are positive and continuous for each memberk = 1; :::; K, and eachs 2 s. The consumption technology constants as are bounded and strictly positive for each s^2 s and each good.

Assumption B1 essentially lays out the collective household model as discussed in the previous section. The continuity conditions follow naturally from smooth utility and household bargaining

or social welfare functions. Similarly, having the Barten coe cientsa_{si} be bounded and positive must hold because it is impossible for every member of a household to consume more than the total purchased quantity of a good (even if it is completely shared), and it is impossible to consume negative quantities of goods.

Our rst goal is to identify relative values of the Barten constantsa_{s1},...,a_{sJ}. We cannot imme-

and has nonzero derivatives with respect tp:

M (p; s) =
$$
\lim_{y \to 0} \frac{\textcircled{a} \mid (p; s; y) = \textcircled{a} \underline{y}}{1 \mid (p; s; y)^2} \frac{\textcircled{a} \cdot \underline{b} \cdot (p; s; y) = \textcircled{a} \underline{y}}{1 \mid (p; s; y)^2}
$$

ASSUMPTION B4: Assume that $\frac{1}{y}$ includes (0;1). Assume there exists a private assignable good j. Assume that for all $(p; s) 2 p s (except possibly on a subset of measure zero), there$ exists a real constantc such that the function M $(p; s)$ de ned by the following equation is nite, and has nonzero derivatives with respect tp

in Theorem 2 we do not assume a scale normalization, i.e., we do not yet impose Assumption A2. Later we will use data on singles living alone, who therefore cannot share, to properly scale each a_{sj} .

A notable feature of Theorem 2 is that it gets identi cation from the demand functions of just one or two goods that the household consumes. Since we can estimate household demand functions for many goods, we can expect the Barten scales to be greatly over identied in practice. Also, these results do not require monotonicity of demands, which is useful because empirically the e ects of both p and y on budget shares can change signs.

Another feature of Theorem 2 is that the only constraint it places on the resource share functions $^{\text{k}}_{\text{s}}$ (p) is the minimal regularity given in Assumption B1. In particular, Assumptions B2 to B6 place no additional constraints on the resource share functions, as can be seen by replacing e (ϕ) with any other suitably bounded regular function $e^k_{\rm s}$ (p) in the proof of Theorem 2.

To illustrate some of the above alternative identifying assumptions, consider the general case of private assignable demand functions that are polynomials in. More precisely, let good be assignable to membej , and assume the functiorh $^{\text{k}}_{\text{j}}$ is an arbitrary L'th order polynomial in y, so

$$
\mathsf{I}_{j}(p; s; y) = \mathsf{I}_{s}^{j}(A_{s}p) \sum_{i=0}^{k} A_{i}^{j}(A_{s}p) \mathsf{I}_{s}^{j}(A_{s}p) y^{i}
$$

for some functions

Given identi cation of the Barten technology, our next goal is identi cation of the relative values of the resource share functions^k. De ne the vector $\frac{1}{155}$ (p) to be the vector of elements $\frac{1}{155}$ (p_j) dened by

$$
{\text{stj}}\,\left(p{j}\,\right) =\,\frac{p_{j}}{a_{\text{sj}}\!=\!a_{\text{j}}}
$$

for somet $2 \simeq s$ chosen by the econometrician.

ASSUMPTION C1: Assume that $\,$ y includes a one sided neighborhood of zero, that there exists a private goodj that is assignable to some household member and for that goodj the budget share function! $_{i}$ (s; $_{st}$ (p); 0) is nite and nonzero for all (p; s) 2 $_{p}$ s.

ASSUMPTION C2: Assume that $\frac{1}{y}$ includes (0;1), that there exists a private good j that is assignable to some household memble and for that goodp; s p s s

in Theorem 3 uses just the demand functions of at most two goods for each household member. Since the demand functions for many goods are observed, as with Theorem 2 we can in general expect substantial overidentication, based on information using multiple goods that the household consumes. Another limitation of Theorem 3 relative to the earlier generic identication literature (albeit a restriction with a great deal of theoretical precedent and empirical support, as discussed earlier) is our assumed restriction that the resource share function not depend on

Identi cation of relative values of resource shares does not su ce to answer some questions of economic signicance. In particular, as stressed by Dunbar, Lewbel, and Pendakur (2013), identi cation of poverty rates and of relative bargaining power of household members requires identifying the levels of resource shares, not just their relative values.

Therefore, for the last part of this section, we consider using additional information to obtain identi cation of the entire model, including levels of resource shares, levels of Barten scales, and the demand functions of each household member.

ASSUMPTION D1: For each household member $= 1$; :::; K 1 assume there exists a private assignable good, which without loss of generality denote as good assume that we observe singles of member type k living alone, and that the demand functions for these assignable goods, the functions $\mathsf{h}^{\mathsf{k}}_{\mathsf{k}}$, are the same whether a member of typle is in a collective household or not.

To identify the levels of resource shares, BCL assume that we can observe singles of every household member typek = 1; :::; K, and that their demand functions for all goods remain the same whether inside or outside a collective household. Assumption D1 considerably weakens the BCL assumptions, by only requiring that we observe singles of 1 member types, and that only one good for each type needs to have a demand function that doesn't change when in a collective household. However, Assumption D1 is stronger than BCL in one sense, which is that it requires existence of some private assignable goods.

THEOREM 4: Let the Assumptions of Corollary 1 hold for alls $2 \,$ s, and let Assumption D1 hold. Let either Assumption C1, C2, or B6 hold. Then the entire model is identi ed.

What we mean by the entire model being identied in Theorem 4 is that all the Barten scales

⁷Note that when we say the demand function doesn't change, we only mean the function \mathbf{b}_k^k (which are derived from individual k's utility function) stay the same. Actual consumption quantities as functions of prices and total expenditures will di er, because within the collective household, each function h_{k}^{k} is evaluated at shadow prices and a shadow budget, rather than market prices and the single's actual budget.

 $\mathsf{a}_{\mathsf{s} \mathsf{j}}$, all the resource share functions $^{\mathsf{k}}_{\mathsf{s}}(\mathsf{p})$, and all the demand functionsh $^{\mathsf{k}}_{\mathsf{j}}$ (p; y) are identi ed.

In our application, we have $K = 3$: men, women, and children. So for Theorem 4 we need K 1 = 2 of these three to have an identi able private assignable good. In our case we observe men's clothes and women's clothes, which have demand functions that we identify from single men

Here $b^{hk}(p)$ and $c^{hk}(p)$ are price indices de ned as

$$
In[b^{hk}(p)] = (Inp)^{\theta-hk};
$$
\n(11)

$$
c^{hk}(p) = c_0^{hk} + (lnp)^{\theta-hk} + \frac{1}{2}(lnp)^{-k\theta}lnp;
$$
 (12)

^{hk}, hk, and k areJ-vectors of preference parameters, is aJ J matrix of preference parameters $\frac{k}{jj}$, having rank J $\,$ 1, and c_0^hk is a scalar parameter which we set to equal to zero based on the insensitivity reported in Banks et al. (1997). By de nition, budget shares must add up to one, i.e., 1^0 ! μ k = 1 for all p=y, where 1 is a J-vector of ones. This, in turn, implies that 1^0 μ k = 1, 1° ^{hk} = 0, 1^{${\circ}$} k = 0, and k^{${\circ}$}1_J = 0_J, where Q is a J-vector of zeros. Slutsky symmetry requires that k be a symmetric matrix.

As the indices above show, we let the parameter vectors^k and h ^k vary by householdh as well as by individual k. In particular, we specify these parameter vectors by

$$
{}^{hk} = {}^{k}_{0} + \sum_{m=1}^{M} {}^{k}_{m} d^{hk}_{m} \tag{13}
$$

$$
{}^{hk} = {}^{k}_{0} + \bigotimes_{m=1}^{k} {}^{k}_{m} d^{hk}_{m;} ; \qquad (14)
$$

M

whered^{hk} and dhk are observed demographic characteristics, anid and M Mand and M

$$
m = \frac{\exp(\binom{m\ell_{\mathsf{S}}}{\ell})}{1 + \exp(\binom{f\ell_{\mathsf{S}}}{\ell}) + \exp(\binom{m\ell_{\mathsf{S}}}{\ell})};
$$
\n(16)

where f denotes female andm denotes male, and the children's resource share is 1^f m. If there are no children in the household, then

$$
f = \frac{\exp(\binom{f}{s})}{1 + \exp(\binom{f}{s})};
$$
\n(17)

and the husband's share is 1 $\,$ f. This is a commonly used functional form for imposing the constraint that resource shares are positive and sum to one.

In the collective household literature, variabless that aect resource shares are called "distribution factors." See, e.g., Browning, Bourguignon, Chiappori, and Lechene (1994), Browning and Chiappori (1998). In our model, these variables also a ect the Barten parameters s_{si} . Lewbel and Pendakur (2019) call variables that a ect both resource shares and sharing, "cooperation factors." The vector s in our application consists of the di erence in age between the wife and husband, the di erence in log income between the wife and husband dnumber of children, the minimum age of children less 5, the age of the wife less 39 (the average age of wives in the sample), and indicators of whether the wife has some college education, and whether the husband has some college education.

With the Barten consumption technology, we obtain the following expression for the budget shares of couples with one to four children:

$$
! \, j \, (p; s^{h}; y^{h}) = \begin{array}{c} \text{if} \, j \, \text{if} \, \\ \text{if
$$

Couples with no children have the same expression but with^{f} (the budget share demand function of children c for goodj) set equal to zero.

We next require one of Assumptions B2, B3, B4, B5, or B6 to hold. In our demand model, Assumption B6 holds with L=2. Alternatively, it can be directly veried that Assumption B3 holds as well. Either su ces for Theorem 2.

Next consider Corollary 1. This entails identi cation of relative values of A_s from M (p; s). This is most readily satis ed with M (p; s) = $c^{hk}(A_s p)$. Applying Assumption A3 we get that $\mathcal{Q}(M(p; s) = \mathcal{Q}_j$ pat $p = 1$ is $\bigcup_{p=1}^{J}$ k jj *⁰*asj for j = 1; :::; J, from which we can recover the relative values of the a_{sj} . Note that the matrix of parameters $\frac{k}{jj}$ is identi ed from variation in p.

Finally, consider Theorems 3 and 4. Assumption C1 is in some ways a mild restriction, since it only requires that budget shares, which should lie between zero and one, stay well bahaved even when y goes to zero. However, some popular functional forms, including our QUAIDS model, violate this assumption, because it's a polynomial in ly. The demand functions here do not satisfy either Assumption C1 or C2, and so Theorem 3 identifying relative resource shares does not apply. However, in this case we do not need Theorem 3, because we satisfy the assumptions of Theorem 4, shoes for the household head, spouse(s), and children. The sum of expenditures on clothing and shoes for each household member type (men, women, and children) are our private assignable goods. Note that while the data include assignables for $d\mathbf{N} = 3$ types of household members, our identi cation theory only requires observation of $K \t1 = 2$ assignable goods. This provides over identifying information.

We select households (single men, single women, and married couples) according to the following criteria: (1) single women and men are restricted to be between 22 to 65 years old; (2) couples with children aged 15 or over are excluded (since adult clothing purchases could be consumed by older children); (3) households with members as students are excluded; (4) for married couples, households with members over 50 are excluded; (5) observations where expenditures on four or more of the six goods is zero are excluded; and (6) to mitigate the possible e ects of outliers, we trim the samples with respect to key variables (the budget share of each aggregate good and log real total expenditure) by dropping observations in the lower and upper 1 percentile. After applying these criteria, we are left with a sample consisting of 276 single women, 357 single men, and 1068 married couples having from zero to four children.

Price data comes from the 2015 based Consumer Price Index (CPI) from e-sTat, the portal site of ocial statistics of Japan. The detailed construction of price indexes for each aggregate good is reported in Appendix B of the Supplemental Appendix.

7.2 The Estimator for Singles

The demand functions for households consisting of just a single man or a single woman are given by equation (10). Such households have either f if the householdh is a single woman or $k = m$ if the householdh is a single man. In this subsection we describe how these demand functions for singles are estimated. The demand functions and associated estimators for households consisting of multiple members are given in the next subsection.

For householdsh consisting of singles, we append Δ -vector valued additive error term U^{hk} (consisting of elementsU^{jhk}) to equation (10).¹⁰ We assume thatU^{hk} are uncorrelated across households. Adding up requires j 1U^{hk} = 0, which implies that nonzero correlations must exist among the elements of eacb^{hk}, that is, within households across goods. Budget share demand equations are estimated using GMM, allowing for arbitrary correlations in the errors across goods.

 10 Additive errors can either be rationalized as measurement errors in budget shares, or by imposing restrictions on preference heterogeneity as in Lewbel (2001).

Let u^{jhk} k = U^{jhk} denote! ^{jhk} minus the j'th element of the right hand side of equation (10), where k is the vector of all the parameters in that equation. Note thatu^{jhk k} is implicitly a function of ! ^{jhk} and of all the regressors in the model. The moments used for GMM estimation take the form E u^{jhk} k hk = 0, with hk being a vector of covariates as de ned below. To impose the adding-up constraints we apply the standard practice of dropping one demand equation, and we recover the estimated parameters for that last equation using the adding-up constraints. The choice of which demand equation to drop is numerically irrelevant, because by the adding-up constraints, the parameters of the dropped equation are all deterministic functions of the parameters in the remaining equations. The full set of moments for estimating the model of singles of typteis therefore E u^{jhk} k $hk = 0$ for $j = 1; ...; J$ 1. Letting u^{hk} k be the J 1 vector of elements u^{jhk k} for $j = 1,..., J$ 1, we equivalently write these moments as I_{J-1} hk u^{hk} k = 0.

The set of covariates hk (for single householdsh) consists of region dummies, age, log relative prices, log real total expenditure (dened as the log of total expenditures divided by a Stone price index computed for our six nondurable goods) and its square, and the product of log real total expenditures with the home ownership dummy and with log prices. The number of moments t herefore consists $\Omega_{3684\;T4\rm rshipE}$

99th percentile. We shift the plots for couples with 0-4 children to the left in these gures to make them comparable to the singles plots. We nd that food (at home and eating-out), utility, and communication are necessities while clothing and shoes, transportation, and entertainment are luxuries. Single women have a steeper Engel curve slope for clothing and shoes compared to other households. Couples with 0-4 children have a steeper Engel curve slope for entertainment compared to singles. Elasticity estimates for single women and single men are reported in Table 1 in Appendix D of the Supplemental Appendix.

7.3 The Joint Model

Unlike singles, who have budget share equations for six goods, couples have budget sh \sharp (pssʰ; yʰ) for seven or eight goods, since they include men's clothes, women's clothes, and (when present) children's clothes as separate goods, while singles just consume one type of clothing.

The parameters of the joint model consist of all the QUAIDS parameters of budget shares, \mathbf{f}_i , ! km , and ! hc , the Barten scale A_s , and the parameters of the sharing rules h ^t and h tm. We jointly estimate all the parameters of the model using data from both singles and couples.

We have 150 preference parameters (517 - 10 = 75 symmetry constrained QUAIDS parameters for each of men and women). We also have 6 Barten scale parameters and 16 sharing rule parameters (the 7 listed above plus the constant for each of men and women); this gives a total of 172 parameters. We have 335 instruments (for each of the 5 goods there are 22 instruments for single men, 22 for single women, and 23 for couples), giving a maximum degrees of freedom of 163 for the most general model. The GMM weighting matrices for singles W^f and W^m , are obtained from the QUAIDS estimates for singles in the previous subsection. The weighting matrix for childre M^c is derived using two-step GMM on the full system, starting with an initial identity weighting matrix. The GMM criterion is:

$$
\min(v^c()^{\theta}W^c v^c() + v^f()^{\theta}W^f v^f() + v^m()^{\theta}W^m v^m()); \qquad (20)
$$

where is the full parameter vector of the joint model and the instrument matrices are de ned as in equation (19).

Table 1: Summary Statistics, JHPS/KHPS 2004 - 2016

Table 2: Estimation Results: the Sharing Rule Parameters and Barten Scales

Wife **Husband**

Table 4: Sharing Rule Implications

Notes: The benchmark households (row 1) are ones in which neither the wife nor the husband has college education and are renters with median total expenditure. Row 2 shows the wife's resource share in households that are similar to the benchmark households but in which the wife has college education. Row 3 shows the wife's resource share in households that are similar to the benchmark households but in which the husband has college education. Row 4 shows the wife's resource share in households that are similar to the benchmark households but are home owners.

Table 5: Implications of Estimates

Notes: Values are in mean. Equivalent budget share is the budget share of the wife (husband) if she (he) is endowed with the fraction of resources and faced with shadow prices (market prices discounted by the Barten scales). The equivalent expenditure is the expenditure that the wife (husband) needs to obtain the same private good equivalents in marraige if she (he) is living alone, endowed with the fraction of resources in marriage and faced with market prices. Scale economy means it would cost the couple R percent more to buy the (private equivalent) goods they consumed if there had been no shared or joint consumption. The expenditures are in thousand yen.

(which constitutes over three fourths of all household consumption in the JPSC).

As another check on our estimates, we do our own comparison (in Appendix C of the Supplemental Appendix) to self-reports of individual private consumption in the JPSC. Overall, our estimates are comparable to the JPSC reports, however, by failing to allocate shared goods, we nd that the JPSC appears to underestimate the relative contribution of wives vs. husbands to children's resources.

Estimates of Barten scales are reported in Panel B of Table 2. Clothing and shoes are our private assignable goods, so their Barten scales equal one. We nd that food and communication are highly the private good equivalent quantities for each household memble for each good are given by

$$
x_j^{hk} = \frac{!}{a_{sj}}^{hk} {^{hk}} y^h
$$
 (21)

and relative economies of scale to consumption are de ned as

$$
R = \frac{P_{j} P_{k} x_{j}^{hk}}{y^{h}} \t 1 = \frac{P_{j} P_{j} ((\frac{P}{P_{k} x_{j}^{hk}}) z_{j}^{h}))}{j P_{j} z_{j}^{h}}.
$$
 (22)

BCL de ne a member's indi erence scale to be the cost (as a fraction ϕ), at market prices, of the cheapest bundle of goods that gets memble to the same utility level (i.e., the same indi erence curve over goods) that the member attains in the household by consuming his or her own vector of private good equivalents. Let \mathcal{V}^k denote the QUAIDS indirect utility function of member k. The indi erence scaleIS^{hk} for each memberk is de ned as the solution to

$$
\vartheta^k \quad \frac{p=y}{\text{IS}^{\text{hk}}} = \vartheta^k \quad \frac{A_s p=y}{\frac{\text{hk}}{s}} \quad \text{.}
$$

Table 5 reports the estimates of members' private good equivalent expenditures indi erence scales S^k, and the overall economies of scaRe. Row 6 in Table 5 reports the indi erence scale for wives. This indi erence scale can be interpreted as the fraction of the household's total expenditures that a wife would need when living alone (i.e., as a single) to attain the same indi erence curve over goods that she reaches as a member of the household. The table shows that, on average, wives would require 67% of the couple's total expenditures to be as well o living alone as she is in the couple, when there are no children. This drops to only 23% in families with 3 to 4 children, re
ecting how much less, relatively, women consume when children are present. The corresponding numbers for husbands (in row 7 of Table 5) are 66% without children, dropping to 36% when 3 to 4 children are present.

The interpretation of an indi erence scale as the relative cost of living alone is not relevant for children, however, indi erence scales for children still provide a measure of the savings in costs of children that households attain by sharing consumption, and it is meaningful to compare the relative values of children's indi erence scales in households of di erent compositions. Children's indi erence scales are reported in row 8 of Table 5.

The second to the last row in Table 5 gives household's overall economies of scale. On average, it ranges between 0.33 to 0.36 across di erent household types. This implies that it would cost families 33% to 36% more to buy the (private equivalent) goods they consumed if there had been no shared or joint consumption.

8 Conclusions

We provide theorems for point identifying a general class of semiparametric models that are applicable to a variety of applications, including continuous consumer demand, production functions, and multiple index models. We then extend these results to show point identi cation for a large class of collective household models, which previously had only been shown to be generically identied. Moreover, we do so in a model that allows goods to be partly shared, including identifying the demand functions and resource shares of children.

We apply our model to Japanese data consisting of single men, single women, and married couples with zero to four children. Our ndings have important policy implications for the analysis of individual welfare, particularly children's welfare, in multi-person households. For example, one potential application of our identi cation and resulting estimates could be to calculate appropriate levels of compensation for children, to maintain their standard of living, if parents separate or a parent dies. Also, since we identify (ordinally) the utility functions of children and their parents, the framework can be used to evaluate the impact of welfare programs (e.g., taxes or subsidies) on the individual welfare of mothers, fathers, and children.

References

Ackerberg, D.A., K. Caves, and G. Frazer (2015), Identi cation Properties of Recent Production Function Estimators. Econometrica, 83, 2411-2451

Ahn, H., H. Ichimura, J. L. Powell, and P. A. Ruud (2018) Simple Estimators for Invertible Index Models, Journal of Business & Economic Statistics, 36(1), 1-10.

Ai, C. and Chen, X. (2003), E cient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions. Econometrica, 71: 1795-1843.

Banks, J., Blundell, R., and Lewbel, A. (1997). Quadratic Engel curves and consumer demand. The review of economics and statistics, 79(4), 527-539.

Bargain, O., and Donni, O. (2012). Expenditure on children: A Rothbarth-type method consistent with scale economies and parents' bargaining. European Economic Review, 56(4), 792-813. Barten, A. P. (1964), *\Family Composition, Prices, and Expenditure Patterns," in Hart, P., Mills, G.* and Whitaker, J. K. (eds) Econometric Analysis for National Economic Planning: 16th Symposium Colston Society (London: Butterworth), 277{292.

Basu, S. and J. G. Fernald, 1997, Returns to Scale in U.S. Production: Estimates and Implications Journal of Political Economy 105(2), 249-283.

Becker, G. (1965), \A Theory of the Allocation of Time", Economic Journal, 75, 493{517.

Becker, G. S., (1981) A Treatise on the Family. Cambridge, MA: Harvard University Press.

Bonke, J. and M. Browning, (2011), "Spending on Children: Direct Survey Evidence," The Economic Journal, 121(554), F123{F143.

Browning, M., Bourguignon, F., Chiappori, P. A., and Lechene, V. (1994). Income and outcomes: A structural model of intrahousehold allocation. Journal of political Economy, 102(6), 1067-1096. Browning, M., and Chiappori, P. A. (1998). E cient intra-household allocations: A general characterization and empirical tests. Econometrica, 1241-1278.

Browning, M., Chiappori, P. A., and Lewbel, A. Philde01(har-327.01ntiou21.00nd)mpzationntiou21.7(eq

d(el,51001.el,51003(Chiapp)-27.001(ori,51081.998(P)81.004(.47425.00A.ri,51081.990(and)7425.00Megh andcPorutcwning, Journal ofolitical Economy

Lewbel, 51827.001.el, 51928.000(and)-380(P)82.00ommasiel, 51827.00D.nd PPc and Famild withBaredof Frenoionm

Car(6640)6944.99[(with)4126.90cens1(ong.nd)-38j(Journa.)]TJ T* 7(of)-307(Econometrs),)-323(1)105(2), and35&2M.00,V(P)82.69ernoucad(e,)6-27.00F(G.)57&04@90(Pw)2h77001(e35827.00labpp)326.993r8.

withand36348.992(in)27.001(th(Jou)0.99s(.u)0.99er)80.99sehold

32

Cherchye, L., De Rock, B., Lewbel, A., and Vermeulen, F. (2015). Sharing rule identication for general collective consumption models. Econometrica, 83(5), 2001-2041.

Cherchye, L., Demuynck, T., De Rock, B., and Vermeulen, F. (2017). Household consumption when the marriage is stable. American Economic Review, 107(6), 1507-1534.

Chiappori, P. A. (1988). Rational household labor supply. Econometrica: Journal of the Econometric Society, 63-90.

Chiappori, P. A. (1992). Collective labor supply and welfare. Journal of political Economy, 100(3), 437-467.

Chiappori, P. A., and Ekeland, I. (2006). The micro economics of group behavior: general characterization. Journal of Economic Theory, 130(1), 1-26.

Chiappori, P. A., and Ekeland, I. (2009). The Microeconomics of Ecient Group Behavior: Identication 1. Econometrica, 77(3), 763-799.

Chiappori, P. A., Fortin, B., and Lacroix, G. (2002). Marriage market, divorce legislation, and household labor supply. Journal of political Economy, 110(1), 37-72.

Couprie, H., Peluso, E., and Trannoy, A. (2010). Is power more evenly balanced in poor households? Journal of Public Economics, 94(7-8), 493-507.

Donkers, B., and M. Schafgans, (2008). Speci cation and estimation of semiparametric multipleindex models. Econometric Theory, 24(6), 6heorywheuji(2008)icedr(6),)9-5676.005-.004(ran)1.19005-.00 Horowitz, J. (1998) Semiparametric Methods in Econometrics, NewYork:Springer

Ichimura, H., and Lee, L. F. (1991), \Semiparametric Least Squares Estimation of Multiple Index Models: Single Equation Estimation," in Nonparametric and Semiparametric Methods in Econometrics and Statistics: Proceedings ofthe Fifth International Symposium in Economic Theory and Econometrics,eds. W. A. Barnett, J. Powell, and G. Tauchen, Cambridge, U.K.: Cambridge University Press

Jorgenson, D., L.J. Lau, and T.M. Stoker (1982) \The Transcendental Logarithmic Model of Aggregate Consumer Behavior." In Advances in Econometrics , edited by RL Basmann and G Rhodes, 97-238. Greenwich: JAI Press.

Khan, S. and Tamer, E. (2010), "Irregular Identication, Support Conditions, and Inverse Weight Estimation," Econometrica, 78, 2021-2042.

Lewbel, A. (1991), "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, 59(3) 711-730.

Lewbel, A. (1998), "Semiparametric latent variable model estimation with endogenous or mismeasured regressors," Econometrica, 66, 105-121.

Lewbel A. (2001), "Demand Systems with and without Errors." American Economic Review, 91(3), 611-618.

Lewbel, A. (2019), "The Identi cation Zoo: Meanings of Identi cation in Fullels: SingleA.267.001(G) Indian and the control of t on individual expenditures and time use (No. W14/05). IFS Working Papers.

Matzkin, R. L. (2003). Nonparametric estimation of nonadditive random functions. Econometrica, 71(5), 1339-1375.

Matzkin, R. L. (2007). Nonparametric identi cation. Handbook of econometrics, 6, 5307-5368.

Matzkin, R. L. (2012). Identi cation in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity. Journal of Econometrics, 166(1), 106-115.

McManus, D. A. (1992), \How common is identi cation in parametric models?" Journal of Econometrics, 53(1), 5-23.

Menon, M., Pendakur, K., and Perali, F. (2012). On the expenditure-dependence of children's resource shares. Economics Letters, 117(3), 739-742.

Penglase, J. (2019), "Consumption Inequality Among Children:Evidence from Child Fostering in Malawi," Unpublished manuscript, Boston College.

Pollak, R., and Wales, T. (1981). Demographic Variables in Demand Analysis. Econometrica, 49(6), 1533-1551.

Prais, Sigbert J., and Hendrik S. Houtakker, 1955, The analysis of household budgets,Cambridge.

A Appendix

A.1 Appendix A: Proofs

PROOF of LEMMA 1: The function G (p) is identi ed for all $p 2 p$ by G (p) = M (p; t), where t is de ned in Assumption A2. Also, the functionsm_i (p; s) and g (p) are identi ed (where the derivatives de ning these functions exist) for alp $2-p$ by construction because they are derivatives of identied functions.

Now let Assumption A3 hold. Sincem_j (p; s) = g_j (a_{s1}p₁; :::a_{sJ} p_J), we have that

$$
q_{ij} \; (\; ; \; \mathbf{p}; s) = a_{sj} \frac{q_{j} \; (a_{s1} \mathbf{p}_{1}; \dots a_{sJ} \mathbf{p}_{J})}{q_{j} \; (\; 1 \mathbf{p}_{1}; \dots \; J \mathbf{p}_{J})} \; \text{for} \; j = 1; \dots; J \tag{24}
$$

Since this mapping is a contraction, by the Banach xed point theorem there exists is a unique such that = $(; p; s)$. This unique is identi ed, because the value of the function $(; p; s)$ is identi ed. But by equation (24), $a_s = (a_s; p; s)$, and therefore the unique identi ed is the desired coe cient vector a_s .

Next, suppose instead that Assumption A4 holds. For apt in the neighborhood of zero given by Assumption A2, let m_i (p; s) = $\mathcal{Q}M(p; s) = \mathcal{Q}_p$ and let g_i (p) = $\mathcal{Q}(p) = \mathcal{Q}_p$ (these can be one sided derivatives). These functions are identi ed by construction given tham $(p; s)$ and $G(p)$ are identi ed. Then, it follows from equation (24) that a_s is identi ed by $a_{sj} = j(0; 0; s) =$ $\lim_{p \mid 0}$ m (p; s) =g (p) (where, e.g., this limit is from above ifp > 0).

Finally, given identi cation of each a_s , the function G (m G

for each good,

$$
C_{sj} = \n\begin{bmatrix}\nZ & 7 & Z & 7 \\
\vdots & \vdots & \ddots & \vdots \\
Z^{0} & 7 & Z^{0} & 7 \\
\vdots & \vdots & \ddots & \vdots \\
Z^{0} & 7 & Z^{0} & 7\n\end{bmatrix}\n\quad\n\begin{bmatrix}\nG(a_{s1}p_1; \dots; a_{sJ}p_J)\n\end{bmatrix}\n\begin{bmatrix}\np_1^{-1} \dotsp p_j^{-1}{}_1 p_{j+1}^{-1} \dotsp p_J^{-1} d p_j \dots d p_J \\
\vdots & \vdots & \vdots \\
Z^{0} & 7 & Z^{0} & 7\n\end{bmatrix}\n\quad\n\begin{bmatrix}\nG(1; \dots; 1)\n\end{bmatrix}\n\begin{bmatrix}\na_{s1} & a_{s2} & a_{s3} & a_{s4} & a_{s5} & a_{s4} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 7 & 7 & 7\n\end{bmatrix}\n\begin{bmatrix}\na_{s1} & a_{s3} & a_{s4} & a_{s4} & a_{s4} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 7 & 7 & 7\n\end{bmatrix}\n\begin{bmatrix}\na_{s2} & a_{s3} & a_{s4} & a_{s4} & a_{s4} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 7 & 7 & 7\n\end{bmatrix}\n\begin{bmatrix}\na_{s1} & a_{s2} & a_{s3} & a_{s4} & a_{s4} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 7 & 7 & 7\n\end{bmatrix}\n\begin{bmatrix}\na_{s1} & a_{s2} & a_{s3} & a_{s4} & a_{s4} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 7 & 7 & 7\n\end{bmatrix}\n\begin{bmatrix}\na_{s1} & a_{
$$

so a_{sj} is identi ed for each s 2 s and j 2 f 1; ...; Jg by $a_{sj} = c_j = C_{sj}$.

PROOF of THEOREM 1: This follows immediately from Lemmas 1 and 2, noting that without the normalization of Assumption A2, the coe cientsa_{si} in the proofs of Lemmas 1 and 2 correspond to $a_{sj} = a_j$ for somet 2 s where the function G(p) in these proofs corresponds to $(a_{t1}p_1; ... a_{tJ}p_J)$

 $j = k$ and we have

M (p; s) =
$$
\int_{0}^{Z_{7}} k(A_s p)^{c} h_k^{k} A_s p
$$
; $\int_{s}^{k}(A_s p) y^{c} y^{c} 1 dy$

Now do the change of variables = $\frac{k}{s}(A_s p)y$

$$
M (p; s) = \begin{cases} \n\frac{1}{2} & \text{if } s(A_s p) \text{ }^c \text{ } h_k^k(A_s p; \text{ }) \text{ }^c \text{ } \frac{1}{2} & \text{if } s(A_s p) \text{ }^c \text{ } \frac{1}{2} \\ \n\frac{1}{2} & \text{if } s(A_s p) \text{ }^c \text{ }^c \text{ }^c \text{ }^d \text{ }^d \text{ } = \text{ } G(A_s p) \text{ }^c \text{ }^c \text{ }^d \text{ } \frac{1}{2} & \text{if } s(A_s p) \text{ }^c \text{ }^d \text{ }^d \text{ }^d \text{ } \frac{1}{2} & \text{if } s(A_s p) \text{ }^c \text{ }^d \text{ }^d
$$

where the last equality above de nes the function G.

Now, if Assumption B5 holds then

M (p; s) =
$$
\begin{array}{ccc} Z & \gamma & \mathcal{K} \\ 0 & k=1 \\ \mathcal{K} & Z & \gamma \\ = & \kappa_{-1} & 0 \end{array}
$$

Next do the change of variables = $\frac{k}{s}(A_s p)y$ in each of theK integrals above.

M (p; s) =
$$
\frac{\cancel{x}^{\frac{Z}{s} \cdot 7}}{\cancel{x}^{\frac{1}{x}} \cdot \cancel{x}^{\frac{1}{x}}}
$$

=
$$
\frac{\cancel{x}^{\frac{Z}{s} \cdot 7}}{\cancel{x}^{\frac{1}{x}} \cdot \cancel{x}^{\frac{1}{x}}}
$$

=
$$
\frac{\cancel{x}^{\frac{1}{x} \cdot 7}}{\cancel{x}^{\frac{1}{x}} \cdot \cancel{x}^{\frac{1}{x}}}
$$

=
$$
\frac{\cancel{x}^{\frac{1}{x} \cdot 7}}{\cancel{x}^{\frac{1}{x}} \cdot \cancel{x}^{\frac{1}{x}}}
$$

=
$$
\frac{\cancel{x}^{\frac{1}{x} \cdot 7}}{\cancel{x}^{\frac{1}{x}} \cdot \cancel{x}^{\frac{1}{x}}}
$$

where the last equality above de nes the functior^G.

Finally, consider the case where B6 holds. $M_j^k(p; y) = \int_{-\frac{L}{20}}^{\frac{L}{20}} (p) (\ln y)^2$ for the private assignablek = j , then

$$
\mathsf{I}_{j}(p; s; y) = \mathsf{I}_{s}(A_{s}p) \sum_{i=0}^{k} \mathsf{I}_{j}(A_{s}p) \ln y + \ln \mathsf{I}_{s}(A_{s}p)
$$

`

Therefore (p; s) = ($\frac{i}{s}(A_s p)j \frac{k}{j} (A_s p)j$)¹ (using the fact that resource shares are positive), so with M $(p; s) = (p; s)!$ $(p; s; (p; s))$ we get

M (p; s) =
$$
\frac{\sum_{i=0}^{n} k (A_s p)}{j} \frac{\ln j}{j} \frac{k (A_s p) j}{(A_s p) j}
$$

which is a function of just terms of the form $\frac{k}{j}$ (A_sp), and so de nesG.

PROOF of THEOREM 3:

By Corollary 1, the relative Barten technology parameters $a_{sj} = a_j$ and $a_{rj} = a_j$ are identi ed for given r, ssaadd

we also identify all relative resource shares $(A_r p)=\frac{k}{t}(A_r p)$ by Theorem 3. For singles of type k = 1; :::; K 1, resource shares must equal one, so taking = t we identify $\frac{k}{s}(p) = \frac{k}{t}(p) = \frac{k}{s}(p)$.

Alternatively, if Assumption B6 holds, then $h_j^k(p; y) = \int_{-q_0}^{q_1} f(x) g(x) \, dx$ (p) $\lim_{k \to \infty} f(x)$ and $\lim_{k \to \infty} f(x)$ are known. This, along with alla_{sj} being known fork = 1;:::; K $\;$ 1 means that resource share $\!S\!\!\!\!/}$ can be recovered from equation (8).

Finally resource shares sum to one, so given the resource share functions all household types s and membersk = 1; :::; K 1, we identify the resource share functions for the last household type K by $\frac{1}{s}(p) = 1$ $\frac{1}{s}$ $\frac{1}{s}(p)$.

In addition to regional prices, the CPI dataset provides price data for each \designated city," that is, each major city with a population of more than half million that is designated as such by order of the Cabinet of Japan.² Combining these city level prices using CPI weights, we construct price indices for designated cities within each of the eight regions, except for the Shikoku region where there is no designated city. Using each regional price index and the price indices for designated cities, we additionally back out price indices for the areas outside each designated city in each region. Thus, for each aggregate good, we obtain price data for 15 (8 regions 2 (designated city or not) 1 (no designated city in Shikoku region)) combinations of regions and city sizes, which we then assign to households in the JHPS/KHPS dataset.

In the food category, the CPI dataset has separate price indices for food-at-home and eatingout. We construct household-level price indices for food using a Stone price index, by taking a weighted average of the log of the price of eating-out and the log price of food-at-home, where the weights are the household's food budget shares of eating-out and of food-at-home. By employing each household's own within food relative consumption weights, this construction more accurately re
ects the price for food faced by individual households than the total food index provided by the CPI.

0.2 APPENDIX C: External Validation of Model Predictions

The estimated resource shares are unobserved, and may suer from measurement error or estimation error due to possible model misspecication (see, e.g. Calvi et al. 2019). To verify our results, we compare our estimated resource shares to individual priv996(vHated)-408(u996(results,)-343)-408(67.99TD expenses/savings for me iii) expenses/savings for my husband iv) expenses/savings for my children

v) expenses/savings for the others.

Categories ii), iii), and iv) are measures of private consumption for wives, husbands, and children.

and Ishikawa 2013). By failing to allocate shared goods, the JPSC appears to underestimate the relative contribution of wives vs. husbands to children's resources.

Figure 1. QUAIDS Ejt Comples what J-4 Channels र x

