


1 Introduction

Microeconomic theory has informed the design of many markets and other institutions. Many

new mechanisms have been proposed to allocate resources in environments in which transfers are

not used or are prohibited. These environments include the allocation and exchange of transplant

organs, such as kidneys (Roth, Sönmez and Ünver, 2004); the allocation of school seats in Boston,

New York City, Chicago, etc. (Abdulkadiro �glu and Sönmez, 2003); and the allocation of dormitory

rooms at US colleges (Abdulkadiro �glu and Sönmez, 1999). The mechanisms used elicit ordinal

preferences of participants.1

The central concerns in the development of allocation mechanisms are incentives and ef�-

ciency.2 The literature focused on Pareto ef�ciency: a social alternative is Pareto ef�cient if there

exists no other social alternative that makes everybody weakly better off and at least one individ-

ual better off. 3 Pareto ef�ciency however is a weak ef�ciency concept; while interpersonal utility

comparisons are not needed for Pareto ef�ciency, it only gives a lower bound for what can be

achieved through desirable mechanisms. In consequence, welfare economics—starting with Berg-

son (1938), Samuelson (1947), and Arrow (1963)—have long looked at stronger ef�ciency concepts

requiring an ef�cient outcome to be the maximum of a social ranking of outcomes; an idea later

named as resoluteness.4 For instance, Arrow (1963), pp. 36-37, discusses the partial ordering of

outcomes given by Pareto dominance, and observes:

But though the study of maximal alternatives is possibly a useful preliminary to the anal-

ysis of particular social welfare functions, it is hard to see how any policy recommendations

can be based merely on a knowledge of maximal alternatives. There is no way of deciding

which maximal alternative to decide on.

Our paper carries out the Bergson-Samuelson-Arrow's program of analyzing stronger welfare cri-

teria to discrete mechanism design, in which continuous transfers are not allowed and there is a

�nite number of alternatives. We study a broad class of discrete environments, merely imposing

a natural richness assumption on preference domains; richness is a substantially weakening of

Arrovian universal domain assumption and it is satis�ed in many practically and theoretically

relevant economic domains such as voting for candidates or issues with universal strict prefer-

1In the context of deterministic mechanisms without transfers eliciting ordinal information is all we can do. In
addition, eliciting ordinal preferences is considered simpler and more practical (see Bogomolnaia and Moulin, 2001).

2For instance, Bogolomania and Moulin (2004) write that “the central question of that literature is to characterize the
set of ef�cient and incentive compatible (strategy-proof) assignment mechanisms.”

3Relatedly, constrained Pareto ef�ciency is also studied, e.g., in the context of allocation of resources, stable (or fair)
matchings that are not Pareto dominated by other stable (or fair) matchings.

4Resoluteness has been a standard property in social choice since its conception and its failure is at the core of the
Condorcet paradox, see e.g. Black (1948) and Campbell and Kelly (2003



ences, matching, and allocation of discrete resources without compensating transfers; for earlier

uses of the richness assumption we study see Pycia and Troyan (2019).

We analyze welfare criteria imposed on social choice functions and social welfare functions.

For every pro�le of individual preference rankings, a social choice function (SCF) determines what

unique alternative should be implemented, while social welfare function (SWF) determines a soci-

etal ranking of alternatives. Allowing for partial societal rankings, we can treat an SCF as an SWF

in which the outcome of SCF is ranked above all other alternatives. 5 Following Arrow (1963), we

say that an SWF is Arrovian if, and only if, it satis�es the standard resoluteness, (strong) Pareto,

and independence-of-irrelevant-alternatives postulates. An SWF is resolute if it has a unique so-

cial maximum for every pro�le of preferences; in particular, every SCF is resolute. An SWF satis-

�es the (strong) Pareto postulate if two socially and Pareto-comparable matchings are ranked so

that the Pareto-dominant matching is ranked above the Pareto-dominated one. An SWF satis�es

the independence of irrelevant alternatives if, given any two pro�les of preferences and any two

alternatives that are socially comparable under both pro�les, if all individuals rank the two alter-

natives in the same way under both pro�les, then the social ranking of the two alternatives is the

same under both pro�les. When we want to highlight the positive rather than normative aspects

of an SCF we refer to it as a mechanism; we allow here both Arrovian and not Arrovian SCFs. We

call a mechanism ef�cient with respect to an SWF if, for every preference pro�les, the resulting

outcome is a maximum of the SWF.6 We say that a mechanism is Arrovian ef�cient if it is ef�cient

with respect to some Arrovian SWF. Finally, we say that a mechanism is strategy-proof if, for any

reports by other individuals, reporting her true ranking leads to the mechanism outcome being

weakly better for an individual than any other report.

We introduce a mild auditability requirement that says that, in order to falsify a proposed

mechanism outcome, it is suf�cient to verify pairwise comparison of individuals' preferences of

the outcome with only one challenging alternative (the challenger). This auditability property is

attractive as it allows to falsify the mechanism outcome with a limited amount of information and

thus largely preserves the privacy of participants' private information. 7

In Theorem 1, we show that Arrovian ef�ciency is equivalent to Pareto ef�ciency and au-

ditability. In Theorem 2 we show that auditability implies non-bossiness of Satterthwaite and Son-

nenschein (1981) and in general the reverse implication fails via an example. We prove that the

conjunction of individual strategy-proofness and non-bossiness is equivalent to group strategy-

proofness, which is in turn equivalent to monotonicity (Maskin, 1999) (Theorem 3). 8 We also

5For analysis of welfare with partial orderings, see e.g. see Sen (1970, 1999), Weymark (1984), and Curello and
Sinander (2020).

6There is a rich social choice literature on the correspondence between choice and the maximum of the SWF ranking
in the context of social choice (see below). This literature is interested in rationalizing social choice rather than the
ef�ciency of mechanisms, and hence it talks about mechanisms “rationalized by an SWF” rather than “ef�cient with
respect to an SWF.”

7For the literature on privacy in mechanism design see the recent survey Pai and Roth (2018).
8Analogous two equivalences were established earlier for object allocation, see Pápai (2000) and Takamiya (2001);

our proof approach is different and simpler.
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show that for Pareto ef�cient mechanisms, either of these equivalent conditions implies Arrovian

ef�ciency.

We illustrate these results by applying them to characterizations in two canonical economic do-

mains. In voting with the universal strict preference domain, our results immediately imply that

Arrovian ef�ciency and Pareto ef�ciency are equivalent conditions for an individually strategy-

proof mechanism as all mechanisms in the universal domain are non-bossy. In allocation of objects

for individuals with unit demand who have strict preferences over the objects—often referred to

as house allocation problems—our insights allow us to leverage the results of Pycia and Ünver

(2017) to fully characterize the class of auditable and ef�cient mechanisms as the class of trading

cycles mechanisms. This characterization provides a no-transfer counterpart of Akbarpour and Li

(



another alternative. In contrast, we rely on the more commonly used strong Pareto postulate in

economics, in which an alternative is Pareto dominated as soon as all agents weakly prefer another

alternative and at least one agent's preference ranking is strict.

Our paper also contributes to the literature on characterizations of dominant strategy mecha-

nisms for house allocation. Ehlers (2002) characterizes group-strategy-proof and Pareto-ef�cient

mechanisms in a maximal domain of weak preferences for which such mechanisms exist and

proves a general impossibility result for the domain of all weak preferences. 12 Note that our con-

cept of partial social ranking is different from Ehlers' allowing only certain weak preferences over

assigned houses; Ehlers' work is not concerned with social rankings of outcomes and we have

equivalence classes for indifferences. Pycia and Ünver (2017) characterizes group-strategy-proof

and Pareto-ef�cient mechanisms in the standard domain of strict preferences and Root and Ahn

(2020) characterize properties of these mechanisms allowing for constraints and providing a syn-

thetic treatment of many social choice domains; see also Barberà (1983) and Pápai (2000) who laid

the foundations for this line of research. Ma (1994) characterized the class of strategy-proof, indi-

vidually rational, and Pareto-ef�cient mechanisms, and his characterization has been extended by

Pycia and Ünver (2017) and Tang and Zhang (2015) to richer single-unit demand, by Pápai (2007)

to multi-unit demand models, and by Pycia (2016) to settings with network constraints.

Sequential dictatorships have not been studied extensively with unit demand for goods, al-

though their special cases have been. In aserial dictatorship(also known as a priority mechanism),

the same individual chooses next regardless of which house the current individual picks. Svens-

son (1994) formally introduced and studied serial dictatorships �rst; Abdulkadiro �glu and Sön-

mez (1998) studied a probabilistic version of them where the order of individuals is determined

uniformly randomly; Svensson (1999) and Ergin (2000) characterized them using plausible ax-

ioms. Allowing for outside options, Pycia and Ünver (2007) characterized a subclass of sequential

dictatorships different from serial dictatorships. With multiple-house demand under responsive

preferences, Hat�eld (2009) showed that sequential dictatorships are the only strategy-proof, non-

bossy, and Pareto-ef�cient mechanisms, and Pápai (2001) characterized the sequential dictator-

ships through the properties of strategy-proofness, non-bossiness, and citizen sovereignty (see

also Klaus and Miyagawa, 2002). In a general model allowing both the cases with and without

transfers, Pycia and Troyan (2019) showed that a broad class closely resembling sequential dic-

tatorships are precisely the mechanisms that are strongly obviously strategy-proof in their sense;

see also Li (2015) and Pycia (2019). For characterizations of random serial dictatorships in terms of

incentives, ef�ciency, and fairness see Liu and Pycia (2011) and Pycia and Troyan (2019). Root and

Ahn (2020) characterize the constrained social choice domains in which generalized sequential

dictatorships are the only group strategy-proof and Pareto-ef�cient mechanisms. As an applica-

tion of their general theorem, they characterize sequential dictatorships as the only mechanisms

which are group strategy-proof and Pareto ef�cient in the roommates problem.

12Most of the literature on house allocation—including our paper—is not affected by Ehlers' impossibility result
because it analyzes environments in which individuals' preferences are strict.
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2 Model

2.1 Environments

Let I be a set ofindividuals and A be a set of socialalternatives . Each individual i has apreference

relation over A (i.e., a complete, re�exive, and transitive binary relation) denoted by < i . We

denote its strict (i.e., anti-symmetric) part by � i and indifference (i.e., symmetric) part by � i . Let

Pi be the domain of preference relations for individual i, and let PJ denote the Cartesian product

� i2 JPi for any J � I . Any pro�le < = ( < i ) i2 I from P = PI is called a preference pro�le . For every

< 2 P and J � I , let < J= ( < i ) i2 J 2 PJ be the restriction of < to J. Suppose that for every individual

there is an exogenousequivalence relation � i on alternative set A . We say that the domain Pi is

rich if the following two conditions are satis�ed:

1. If for any two alternatives a and b we have a � i b, then for every < i2 Pi we have a � i b.

2. If no alternatives in A 0 � A are � i -equivalent, then all strict preferences on A 0belong to Pi .

Thus, effectively, Pi is the universal strict preference domain respecting � i -equivalence classes.13

We say that the preference pro�le domain P is rich if Pi is a rich preference domain for every i 2 I

and for any two alternatives a and b such that a � i b for every i 2 I , a = b. The last condition

eliminates redundancies in our description of the preferences over alternatives. For instance, in

house allocation, each social alternative a is a matching between individuals and objects from

some set anda � i b if, and only if, the object matched to i is the same under a and b. In the rest

of the paper, we assume that P is a rich preference pro�le domain for a �xed equivalence relation

pro�le (� i ) i2 I .

Throughout the paper, we �x I and A , and thus, a problem is identi�ed with its preference

pro�le.

A (direct ) mechanism or a social choice function (SCF) is a mapping j : P ! A that assigns

an alternative for every preference pro�le (or, equivalently, for every problem). We denote the

outcome of mechanism j for a preference pro�le < as j [< ].

We denote by PS the set of strict partial orderings over alternatives, where a strict partial or-

dering is a binary relation that is anti-symmetric and transitive, but not necessarily complete. We

refer to elements of PS as social rankings . A social welfare function (SWF) F : A ! PS maps

individuals' preference pro�les to social rankings. If an alternative a is ranked higher than some

other alternative b under F (< )







3 Equivalences

In this section, we study individually strategy-proof and Arrovian ef�cient mechanisms and estab-

lish for them equivalence results involving Pareto ef�ciency, auditability, group strategy-proofness

and more technical properties of non-bossiness and monotonicity.

First, we characterize Arrovian ef�ciency with the help of auditability. 15

Theorem 1. A mechanism is Arrovian ef�cient if, and only if, it is Pareto ef�cient and auditable.

Second, auditability is a strictly stronger condition than non-bossiness, even for a Pareto ef�-

cient mechanism.

Theorem 2. Any auditable mechanism is non-bossy. The converse does not hold – even for Pareto-ef�cient

mechanisms.

Third, the conjunction of the two non-cooperative properties: individual strategy-proofness

and non-bossiness is equivalent to either group strategy-proofness or monotonicity. 16

Theorem 3. The following three conditions are equivalent for a mechanism:

1. group strategy-proofness,

2. the conjunction of individually strategy-proofness and non-bossiness,

3. monotonicity.

This result generalizes similar results due to Pápai (2000) and Takamiya (2001) for house allo-

cation environments to our more general setting. Its proof is relegated to the appendix.

To illustrate the results and our concepts, let us look at the





and notice that

y [< ] = f (1, A) , (2,B) , (3,C)g ,

y [< 0] = f (1, A) , (2,C) , (3,B)g .

Mechanism y does not satisfy non-bossiness because from< to < 0only 1's preference changes

and her assignment does not change, and yet other individuals' assignments change (leading to

different equivalence classes of alternatives for either individual 2 and 3).

Mechanism y does not satisfy Arrovian ef�ciency. Indeed, by way of contradiction assume

that y is Arrovian ef�cient with respect to some Arrovian SWF Y. Then Y (< ) ranks alternative

y [< ] above y [< 0], and Y (< 0) ranks y [< 0] above y [< ]. But, this violates IIA, a contradiction that

shows that y is not Arrovian ef�cient.

Mechanism y does not satisfy auditability as we can contest the alternative y [< ] with alterna-

tive b = y [< 0].

Mechanism y does not satisfy group strategy-proofness because the group f 1, 3g can bene-

�cially manipulate by reporting < 0
f 1,3g instead of < f 1,3g (noticing



rank a over a0” throughout the proof). Note that Pareto ef�ciency of j implies that conditions (i)

and (ii) are consistent with each other, and hence, that the SWF F is well de�ned.

By de�nition, F satis�es the Pareto postulate. Furthermore, F is transitive: if F (< ) ranks a1

above a2 and it ranks a2 above a3 , then it ranks a1 above a3. To see this: if one of theseà (for

` = 1, 2, 3) equalsj [< ], then it must be that a1 = j [< ], and the claim is proven. If none of the à

equals j [< ], then individuals unanimously rank a1 above a2 and unanimously rank a2 above a3;

we conclude that individuals unanimously rank a1 above a3, and thus, F (< ) ranks a1 above a3 by

construction.

It remains to check that F satis�es IIA. Take two preference pro�les < 1 and < 2 such that each

individual ranks two alternatives, say a





Corollary 3. In the universal strict preference domain, for an individually strategy-proof mechanism the

following two conditions are equivalent:

� Pareto ef�ciency,

� Arrovian ef�ciency.

One direction of the corollary follows from Theorem 2 and then Theorem 1 because, in the

universal strict preference domain, every mechanism is non-bossy, and the other direction was

established in Theorem 1.

4.2 Incomplete and Complete SWFs in House Allocation

We now apply our results to house allocation problems. Formally, a house allocation environment

consists of the set of individuals I and a set of houses H . A social alternative for this problem is a

matching. To simplify the de�nition of a matching, we focus on environments in which jHj � j I j.

To de�ne a matching, let us start with a more general concept that we use frequently below. A

submatching is an allocation of a subset of houses to a subset of individuals, such that no two

different individuals get the same house. Formally, a submatching is a one-to-one function s :

J ! H ; where for J � I , using the standard function notation, we denote by s( i) the assignment

of individual i 2 J under s, and by s� 1



the remaining individuals in a round of the algorithm. We de�ne a control-rights structure as a

function of the submatching that is �xed: A structure of control rights is a collection of mappings

(k, b) =
�

(ks, bs) : H s ! Is � f ownership, brokerageg
	

s2A .

The functions ks of the control-rights structure tell us which unmatched individual controls any

particular unmatched house at a submatching s, where at s is the terminology we use when some

individuals and houses are already matched with respect to s. Agent i controls house H 2 H s at

submatching swhen ks(H ) = i . The type of control is determined by functions bs. We say that the

individual ks(H ) owns H at s if bs(H ) = ownership, and that the individual ks(H ) brokers H at s

if bs(H ) = brokerage. In the former case, we call the individual an owner and the controlled house

an owned house . In the latter case, we use the termsbroker and brokered house . Notice that each

controlled (owned or brokered) house is unmatched at s, and any unmatched house is controlled

by some uniquely determined unmatched individual. We need to impose certain conditions on

the control-rights structures to guarantee that the induced mechanisms are individually strategy-



The algorithm starts with empty submatching s0 = ? and in each round r = 1, 2, ...

it matches some individuals with houses. By sr � 1, we denote the submatching of in-

dividuals matched before round r. If sr � 1 2 A , then the algorithm proceeds with the

following three steps of round r:

Step 1 Pointing.Each houseH 2 H sr � 1 points to the individual who controls it at sr � 1.

Each individual i 2 Isr � 1 points to her most preferred outcome in H sr � 1.

Step 2(a) Matching Simple Trading Cycles.A cycle

H1 ! i1 ! H2 ! ...Hn ! in ! H1,

in which n 2 f 1, 2, ...g and individuals i ` 2 Isr � 1 point to houses H `+ 1 2 H sr � 1

and housesH ` point to individuals i ` (here ` = 1, ...,n and superscripts are added

modulo n), is simple when at least one individual in the cycle is an owner. Each

individual in each simple trading cycle is matched with the house she is pointing

to.

Step 2(b) Forcing Brokers to Downgrade Their Pointing.If there are no simple trading cycles

in the preceding Step 2(a), and only then we proceed as follows (otherwise we

proceed to step 3).

? If there is a cycle in which a broker i points to a brokered house, and there is

another broker or owner that points to this house, then we force broker i to

point to her next choice and we return to Step 2(a). 20

? Otherwise, we clear all trading cycles by matching each individual in each

cycle with the house she is pointing to.

Step 3 Submatching sr is de�ned as the union of sr � 1 and the set of newly matched

individual-house pairs. When all individuals or all houses are matched under

sr , then the algorithm terminates and gives matching sr as its outcome.

One important feature of the TC mechanisms is that we can, without loss of generality, rule out

the existence of brokers at some submatchings if there is a single owner at s. We formalize this

property as a remark:

Remark 1. Pycia and Ünver (2017) For every TC mechanism such that for some s there is only one owner

and one broker, there is an equivalent TC mechanism such that at s there are no brokers and the same owner

owns all houses.
20Importantly, broker i is unique by R1.
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Denote

a1 = j [< 1] = f (1,B) , (2,C)g ,

a2 = j [< 2] = f (1,C) , (2,B)g ,

a3 = j [< 3] = f (1,C) , (2, A)g ,

a4 = j [< 4] = f (1, A) , (2,C)g .

Now, if there is a complete SWF F such that j is Arrovian ef�cient, then F
�
< 1

�
ranks a1 above a4,

and by IIA, this implies that F (< ) ranks a1 above a4. Similarly, F
�
< 2

�
ranks a2 above a1, and by

IIA, this implies that F (< ) ranks a2 above a1. Further, and again similarly, F
�
< 3

�
ranks a3 above

a2, and by IIA, this implies that F (< ) ranks a3 above a2. Finally, F
�
< 4

�
ranks a4 above a3, and by

IIA, this implies that F (< ) ranks a4 above a3. But then F (< ) fails transitivity, showing that there

does not exist a complete SWF with respect to which j is ef�cient. QED

We will use this lemma to characterize individually strategy-proof and Arrovian ef�cient mech-

anisms for jHj > j I j; we will characterize this class of mechanisms for jHj = j I j later. The

resulting class consists of sequential dictatorships. Formally, a sequential dictatorship is a TTC

mechanism y k such that for every s 2 A and H, H0 2 H s, kH (s) = kH0(s), i.e., an unmatched indi-

vidual owns all unmatched houses at s. For notational convenience, we will represent each kH (�)

as k(�). Sequential dictatorships turn out to be the class of Arrovian-ef�cient and individually

strategy-proof mechanisms for this case:

Theorem 4. SupposejHj > j I j. A mechanism is individually strategy-proof and Arrovian ef�cient with

respect to a complete social welfare function if, and only if, it is a sequential dictatorship.

Proof of Theorem 4. If j I j = 1, the theorem is trivially true. Suppose j I j � 2.

( =) ) Consider a mechanism j that is individually strategy-proof and ef�cient with respect

to a complete Arrovian welfare function. By Theorem 2 and Corollary 4, j is a TC mechanism

y k,b.

Fix an arbitrary preference pro�le < 2 P. We claim that at any round r of the algorithm y k,b,

there is exactly one individual who controls all houses. We prove it in two steps. First, let us show

that there cannot be two (or more) individuals who each own a house. By way of contradiction,

suppose that some individual 1 controls house A and some other individual 2 controls house B in

round r.

Suppose s is the submatching created by the TC algorithm for y k,b before round r at < . Fix

house C 2 f A, Bg as an unmatched house at s. Consider four auxiliary preference pro�les < `

that all share the following properties: (i) each individual matched under s ranks houses under

< ` , ` = 1, ..., 4, in the same way they rank them under < , (ii) each individual i unmatched at s

and different from individuals 1 and 2 ranks a unique s-unmatched house Hi 62 fA, B, Cg [ H s as

18



her �rst choice (such a unique house exists as jHj > j I j), and (iii) individuals 1 and 2 each rank

all houses other than A, B, C lower than A, B, C. In particular, the four pro�les differ only in how

individuals 1 and 2 rank houses A, B, C: the ranking of A, B, C is the same as in the four preference

pro�les from the proof of Lemma 1



Lemma 2. Suppose thatjHj = j I j � 3 and a TC mechanism is Arrovian ef�cient with respect to a

complete SWF. Then in this mechanism one individual cannot control a house while two others each own a

house.

Proof. Consider a TC mechanism j in which individual 1 owns house A, individual 2 owns house

B, and individual 3 controls house C. We will show that there is no complete SWF such that j is

Arrovian ef�cient. Consider the preference pro�le

< =

1 2 3

B C A

C A B

A B C
...

...
...

.

and the following three additional preference pro�les

< 1=

1 2 3

B C B

C
...

...

A
...

, < 2=

1 2 3

C C A
... A

...

B
...

, < 3=

1 2 3

B A A
...

... B

C
...

.

Regardless of whether individual 3 owns or brokers house C, we have

a1 = j [< 1] = f (1, A) , (2,C) , (3,B)g ;

a2 = j [< 2] = f (1,C) , (2,B) , (3, A)g ;

a3 = j [< 3] = f (1,B) , (2, A) , (3,C)g .

If there is a complete SWF F such that j is Arrovian ef�cient, then F
�
< 1

�
ranks a1 above a3, and

by IIA, this implies that F (< ) ranks a1 above a3. Similarly, F
�
< 2

�
ranks a2 above a1, and by IIA,

this implies that F (< ) ranks a2 above a1. Further, and again similarly, F
�
< 3

�
ranks a3 above a2,

and by IIA, this implies that F (< ) ranks a3 above a2. Then F (< ) fails transitivity, showing that

there does not exist a complete SWF with respect to which j is ef�cient. QED

Lemma 3. Suppose thatjHj = j I j � 3 and a TC mechanism is Arrovian ef�cient with respect to a

complete SWF. Then, in any round of the TC algorithm, there is at most one broker.

Proof. By way of contradiction, suppose that in some round of the TC mechanism there are more

than one broker and let j be the continuation TC mechanism from this round onwards. Without

loss of generality, in j individual 1 brokers house A, individual 2 brokers house B, and individual

20



3 brokers house C. We will show that there is no complete SWF such that j is Arrovian ef�cient.

Consider the following preference pro�les

< =

1 2 3

B B C

A A B

C C A
...

...
...

.

and

< 1=

1 2 3

A B C

C A B
...

...
...

, < 2=

1 2 3

B B C

A C A
...

...
...

, < 3=

1 2 3

B A B

C C A
...

...
...

.

Denote

a1 = j [< 1] = f (1, A) , (2,B) , (3,C)g ;

a2 = j [< 2] = f (1,B) , (2,C) , (3, A)g ;

a3 = j [< 3] = f (1,C) , (2, A) , (3,B)g .

If there is a complete SWF F such that j is Arrovian ef�cient, then F
�
< 1

�
ranks a1 above a3, and

by IIA, this implies that F (< ) ranks a1 above a3. Similarly, F
�
< 2

�
ranks a2 above a1, and by IIA,

this implies that F (< ) ranks a2 above a1. Further, again similarly, F
�
< 3

�
ranks a3 above a2, and

by IIA, this implies that F (< ) ranks a3 above a2. Then F (< ) fails transitivity, showing that there

does not exist a complete SWF with respect to which j is ef�cient. QED

Proof of Theorem 5. If jHj > j I j, it follows from Theorem 4 and if jHj = j I j = 1, the theorem is

trivially true. Hence, suppose jHj = j I j > 1.

( =) ) Consider a mechanism j that is individually strategy-proof and ef�cient with respect

to a complete Arrovian welfare function. By Theorem 2 and Corollary 4, j is a TC mechanism

y k,b.

Fix < 2 P. We claim that at any round r of the algorithm for y k,b, there is exactly one individual

who controls all houses whenever j Isj > 2. We prove it in three steps (in accordance with Lemmas

1-3). Let s be the submatching created by the algorithm y k,b before round r for < .

�





the proof of Lemma 3 above. Notice that

y k,b[< ` ] = s [ à ,

where à s are de�ned as in the proof of Lemma 3 above. Furthermore, the same argument

we used in the proof of Lemma 3 shows that there can be no SWF that ranks all three à s,

is transitive, and satis�es IIA. Hence, there is no complete SWF that makes y k,b ef�cient, a

contradiction.

Thus, a single individual owns all houses at round r when s is �xed for j Isj > 2 (by Corollary 4

and Remark 1).

This means that y k,b is an almost sequential dictatorship, as all TC mechanisms restricted to

only two individuals are almost sequential dictatorships.

(( = ) Consider an almost sequential dictatorship y k. If y k is a sequential dictatorship, then

the proof of Theorem 4 works. So suppose it is not a sequential dictatorship. Hence, jHj = j I j. We

construct a complete SWFF such that y k is ef�cient with respect to F . Under F any two matchings

are ranked according to the preference relation of the �rst-round dictator; if she is indifferent , then

the matchings are ranked according to the preference relation of the second-round dictator, etc.,

until only two individuals remain unmatched. At this round let 1 and 2 be the two individuals

and A and B be the two houses remaining unmatched. Observe that there are only two matchings,

a and b, in which all individuals' assignments are the same but the last two: in one 1 gets A and

2 gets B, and in the other vice versa. Then one of these two matchings is equal to y k[< 0], where

< 0 ranks the assignment of any individual other than 1 and 2 in a (or equivalently b) as her �rst

choice, and for 1 and 2, the new preferences are the same as the original ones under< . We rank

y k[< 0] 2 f a, bg before the other one under F (< ).

Formally, for every a 2 A , let sequential dictators i1, . . . .,i j I j� 2 be de�ned as i1 = kH (Æ)
for every H 2 H , and in general, i ` = kH (f ( i1, a( i1)) , ...,( i ` � 1, a( i ` � 1)) g) for every H 2 H �

f a( i1), ...a( i ` � 1)g and ` = 1, ...,k; then for every b 2 A � f ag, we say aF (< ) b if one of the follow-

ing two conditions holds:

1. there existsk 2 f 1, ...,j I j � 2g such that a( i1) = b( i1), ..., a( ik� 1) = b( ik� 1), and a( ik) < ik

b( ik);

or

2. for every ` 2 f 1, ...,j I j � 2g, a( i ` ) = b( i ` ), and for < 02 P where eachi ` ranks a( i ` ) �rst while

the remaining two individuals have the same preferences as in < , we have y k[< 0] = a.

By construction, F is complete, antisymmetric, and transitive. Moreover, it satis�es the Pareto

postulate. To see that it also satis�es IIA, consider two distinct matchings, a, b 2 A , and < 2 P

such that a F (< ) b. Also consider another pro�le <̂ 2 P such that each individual i 's preference
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over the two matching assignments is the same in <̂ i as in < i . If a F (< ) b because of condition 1

above, then condition 1 continues to hold for <̂ and thus a F (<̂ ) b. On the other hand, if a F (< ) b

because of condition 2 above, thenaand b only differ in how the last two individuals are assigned

the remaining two houses. Hence, the pro�le constructed to check condition 2 for a F (<̂ ) b, which

we refer to as <̂ 0
, would lead to y k[<̂ 0] = a because:

1. the �rst j I j � 2 dictators would still get their a assignments in the �rst j I ` 2 rounds of the

TC algorithm for y k[<̂ 0], and

2. thus, the assignment of remaining two individuals under y k[<̂ 0] would be identical with

that under a as the relative ranking of their assignments under a and b are identical both in

< and <̂ , and the ranking of the other houses do not matter for �nding the outcome of the

almost serial dictatorship.

Thus, a F (<̂ ) b, showing F satis�es IIA. QED
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A Omitted Proof

Proof of Theorem 3 . (Group strategy-proofness =) individual strategy-proofness and non-

bossiness) By de�nition, any group strategy-proof mechanism is immune to all single-person

group deviations, and hence, it is also individually strategy-proof. To the contrary to the claim,

suppose a group strategy-proof mechanism j is not non-bossy. Then there exists some individual

i, preference pro�le < , and i's preference relation < 0
i such that a = j [< ] � i j [< 0

i ,< � i ] = a0 and

yet there exists some individual j 6= i such that a 6�



(Monotonicity =) group-strategy-proofness). Let j be a monotonic mechanism. Consider

a preference pro�le < , a group J � I , and a possible deviation < 0
J. Supposea0 = j [< 0

J,< � J] < j

j [< ] = a for every j 2 J and for some individual i 2 J the preference relation is strict. Consider

the preference pro�le of J, < �
J such that a0 is ranked higher than a and every other equivalence

class of alternatives are ranked below these two alternatives' equivalence classes.(< �
J,< � J) is a j -

monotonic transformation of < , and hence,j [< �
J,< � J] � j afor al j 2 I by monotonicity of j . Since

a0 is the top alternative in < �
j for every j 2 J and j [< 0

J,< � J] = a0, (< �
J,< � J) is also j -monotonic

transformation of (< 0
J,< � J), and hence, j [< �

J,< � J] � j a0 for every j 2 I by monotonicity of j .

Sincea 6�i a0, we obtain a contradiction. Thus, j is group strategy-proof. QED

B An Incomplete Arrovian Social Welfare Function

The following example illustrates an incomplete Arrovian SWF.

Example 3: Consider a society (or an employer) assigning one task to each of three employees.

All the tasks need to be completed, and the society would like to respect the preferences of the

employees in assigning the tasks as much as possible. As a second order concern, the society

would like to avoid assigning Task A to employee 1 (e.g. because of a belief that employee 1

is not very good in doing this job). The society thus has an SWF that has the maximum at a

Pareto-ef�cient matching that does not assign Task A to employee 1 if there exists at least one

Pareto-ef�cient matching that does not assign Task A to employee 1.

The society's SWF can be equivalently described in terms of a Trading Cycles mechanism y in

which employee 1 brokers A, employee 2 has ownership of B and employee 3 has ownership of

C: for any preference pro�le < f 1,2,3g, the SWF Y (< ) ranks any two distinct matchings a a. <=
[ < 0�

a



Figure 1:Y (< ) in Example 3. For matching a, b, we have aY (< ) b if and only if there is a directed path
from a to b in this graph.
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