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on patients’ decisions. In this paper, we consider an arbitrarily sized group of matched incompatible
patient-donor pairs for whom the only feasible exchange of kidneys is a cyclic exchange. Because
the patients’ health statuses are dynamic, and transplantation surgeries take place simultaneously, we
model the patients’ transplant timing decisions as a noncooperative stochastic game. In Section 2, we
present the stochastic game formulation for which we present our equilibrium analyses in Section 3.
In Section 4, we gain insights by illustrating our model with real clinical data for a large, nationally
representative cohort. Finally, in Section 5 we conclude the paper by highlights.

2. Model Formulation

We consider N ≥ 2 self-interested patient-donor pairs where Patient i is compatible for an
exchange with Donor i+1 for i
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days or weeks) accrued in state s ∈ S given an exchange does not occur. We also define ui(s, 1) as the
expected post-transplant reward (e.g. expected quality-adjusted post-transplant survival) of Patient
i ∈ N given an exchange occurs in s ∈ S . Note that for each patient i ∈ N and state s ∈ S ,
ui(s, 1) is a one-time lump-sum reward, where for each i ∈ N , ui(s, 1) = 0 for all s ∈ D as there is
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her strategy unilaterally. Therefore, strategy profiles satisfying (2) are also known as stationary-
perfect equilibria in the economics literature. In the remainder of the paper, unless otherwise stated,
we let the terms “strategy” and “equilibrium” refer to “stationary strategy” and “stationary-perfect
equilibrium”, respectively.

Recall that an exchange can occur in state s ∈ S only if all patients choose a positive probability
to o↵er to exchange. Therefore, a single patient can not a↵ect the outcome as long as one of the other
patients chooses to wait. As an intuitive consequence, Theorem 1 provides necessary and su�cient
conditions for a strategy profile to be an equilibrium of game G.

Theorem 1 : A strategy profile A is an equilibrium of game G if and only if for all s ∈ S and i ∈ N :
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Because Nash equilibria are immune only to unilateral deviations, game G may admit a large
number of pathological equilibria that make little clinical sense. For instance, by Theorem 1, any
strategy profile under which at least two arbitrary, but not necessarily the same, patients o↵er to
exchange with probability 0 in every state s ∈ S denotes an equilibrium of game G. Furthermore,
as di↵erent equilibria may imply di↵erent payo↵ outcomes, due to vast multiplicity of equilibria that
game G can admit, a complete characterization of such equilibria is computationally prohibitive. As
such, we consider equilibrium selection and motivate the following question: Given the game starts
in state bs ∈ S , which equilibrium maximizes the social welfare, i.e.,
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an alternative equilibrium with an equivalent payo↵ profile in which there is no more than a single
patient who randomizes in any state s ∈ S , which we formally state in Lemma 1 (iii). For a given
strategy profile A, for s ∈ S , let Ys(A) =

�
i ∈ N |ai(s) ∈ (0, 1)
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Patient j ∈ N with byj(s) = 0 randomizes between waiting and o↵ering to exchange. The variable bz
enforces logical relationships among the byi variables for i ∈ N .

Theorem 2 reveals the relationship between equilibria of game G and feasible solutions to ⇤. For
any equilibrium bA of game G, one can construct a feasible solution (bw, by,bz) to ⇤ from bA in which bw
represents the payo↵ profile of bA. As a special case, when there are two patient-donor pairs, for any
pair (bw, by,bz) satisfying (4a)-(4j) one can construct an equilibrium bA of game G from bw and by with
a payo↵ profile equivalent to bw. Note that for a feasible solution (bw, by,bz) to ⇤, while bw represents
the payo↵ profile of the equilibrium that (bw, by,bz) induces, as by
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We can interpret (5) as follows. In a pure equilibrium of game G, for Patient i there are two
possible scenarios in each state s ∈ S : If some of the other patients want to wait, then because the
decision of Patient i will not a↵ect the occurrence of the exchange, she is indi↵erent between waiting
and o↵ering to exchange. Otherwise, she o↵ers as well only if she benefits from the exchange.

4. Numerical Study

We illustrate our model using clinical data. As most of the social benefit is accrued by ex-
changes with three or fewer patients [38], we restrict our focus to two- and three-way exchanges.
For convenience and consistency on notation, we present results only from two-way exchanges and
describe results on three-way exchanges in the appendix. While maximizing the social objective, we
estimate the cost of restricting our attention to pure equilibria, rather than randomized equilibria.
After demonstrating that this cost appears to be negligible, we consider pure equilibria for the rest of
the experiments.

4.1 Data Sources and Parameter Estimation

In this section, we estimate the transition probabilities and post-transplant rewards based on
clinical data. There is a broad consensus among clinicians that glomerular filtration rate (GFR) is
the best measure of remaining pre-dialysis kidney functionality for ESRD patients. Although the
stages of ESRD are mainly based on measured or estimated GFR [28], it appears that no stochastic
model of pre-dialysis GFR progression has been described in the literature. We use GFR levels and
the patient’s dialysis status to represent her health. To build a Markovian progression of pre-dialysis
GFR levels, we use a data set from The Thomas E. Starzl Transplantation Institute at the University
of Pittsburgh Medical Center (UPMC), one of the largest transplantation centers nationwide. This set
provides detailed data on laboratory measurements for more than 60,000 ESRD patients, but due to
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Figure 3: Social welfare loss and patients’ individual welfare losses due to patient autonomy. The
number next to each data label indicates the loss in absolute terms (in quality-adjusted life weeks).

benefits from the central decision-maker’s decisions, and the impact of patient autonomy on her welfare
is more dramatic in absolute and relative terms.

As the society’s interest may conflict with patients’ self-interests, a socially optimal equilibrium
strategy may not be an optimal equilibrium strategy that a patient can play. Therefore, for each indi-
vidual patient we calculate the cost of playing the socially optimal equilibrium strategy rather than any
other equilibrium strategy. We let iA⇤ = (ia⇤i ,i a⇤
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5. Highlights

We model the patients’ transplant timing decisions in a cyclic PKE as a non-zero-sum stochas-
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Also by constraints (4e), (4f) and (4i) for any i ∈ N , u�i(s, 1) ≥ w�i(s) for all s ∈ Ri. By (16a) and
the definition of Zi for i ∈ N , this implies:

For any i ∈ N : u�i(s, 1) > F�i(s, bw�i) for all s ∈ Ri \ Zi. (16b)

Thus, by (16a) and (16b), for any i ∈ N ,
✓
bw�i(s) − F�i(s, bw�i)

u�i(s, 1) − F�i(s, bw�i)

◆
∈ [0, 1] for all s ∈ Ri \ Zi. Now,

consider the strategy profile bA defined by:
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3. If s ∈ Z2, then since u1(s, 1) = F1(s, bw
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