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Abstract

Economists have long recognized that the e�ect of the order of actions in sequential contests



1 Introduction

In this paper, we model shootouts that are used as tiebreak mechanisms in several team sports such

as football and hockey as a mechanism design problem with order independence of the outcome in

mind: which team starts kicking �rst should not matter for the outcome of the shootout but lead

to even chances of winning when all players are equally talented.

Economists have long recognized that the e�ect of the order of actions in sequential contests

on performance of the contestants is far from negligible. Examples in speci�c sequential individual

and team contests are plenty, e.g., R&D races (Fudenberg et al., 1983 and Harris and Vickers,

1985, 1987), dynamic games in general (Cabral, 2002), job promotions (Rosen, 1986), political

campaigns (Klumpp and Polborn, 2006), music competitions (Ginsburgh and van Ours, 2003) as

well as penalty shootouts in football matches (Apesteguia and Palacios-Huerta, 2010) and tennis

matches (Cohen-Zada, Krumer, and Shapir, 2018 and the references therein).1 Clearly, an order

of actions that provides a systematic �rst- or second-mover advantage to one of the parties may

decrease the probability of the `better' contestant to win, causing e�ciency and fairness issues.

Therefore, a focal direction is to aim for order independence in such team contests.

The history and experience of football and other sports' tiebreak mechanisms, known as penalty

shootouts, present us a unique natural experiment to understand the strategic role of move order.

Penalty shootouts currently constitute the only way to determine the winning team when the score

is tied in major football elimination tournament matches after the regular 90-minute period and

the 30-minute extra time, known asovertime. It is customary to use tiebreak mechanisms in many

other sports as well to determine the eventual winner when the regular match ends with a tie, e.g.,

tennis, ice hockey, �eld hockey, water polo, handball, cricket, and rugby.

In a football shootout, since 1970 each team takes �ve penalty kicks from the penalty mark

in �xed order (ABAB for short, meaning that Team A kicks �rst then Team B kicks, then in the

second round Team A kicks �rst again and so on), and the order of the kicks has always been

decided by the referee's initial even coin toss. If the shootout score is tied after each team takes

�ve penalty kicks, sudden-death rounds are reached, which go on until the tie is broken, such that

the kicking order remains the same as regular rounds.2

A particular observation shared by multiple empirical studies regarding football penalty

shootouts is that the degree of how much the kicking order in the ABAB mechanism matters

may di�er across di�erent football competitions/traditions. For example, although kicking order

does not matter for the German national cup, the Spanish national cup shootouts favor �rst-kicking

teams signi�cantly. On the other hand, in English cups, the �rst-kicking team has only a slight

advantage.



cal outcomes in terms of �rst- and second-moving teams' winning chances. In addition, some

researchers provide evidence that the �rst-kicking team winssigni�cantly more often overall with

ABAB, while some others dispute some of that evidence.4 No study, however, provides evidence

that the second-kicking team wins more often overall.

Shootouts tend to be shorter and more structured than a regular match. They can be modeled

like dynamic versions of contests. We introduce such a model in which the kickers not only care about

their team's winning the shootout but also about the individual performance they display during

taking their penalty shot. We provide empirical evidence to support this modeling assumption from

Bar-Eli and Azar (2009) and Almeida, Volossovitch, and Duarte (2016): even high level players often

aim at safer spots where the kick can be saved more often by the goalie than optimal spots, which

provide higher chances of scoring, but also higher chances of kicking out. To capture this feature

of penalty kicks, we assume that for a kicker, a save of his kick by a goalie is less irritating and

more desirable than kicking the penalty out (as in the former case, the miss is caused by somebody

else's, i.e., goalkeeper's, luck or e�ort, but not by the kicker's own mistake as in the latter case).

We explain this empirical evidence in detail in Section 2.

Then we de�ne order independence as the requirement that equally balanced teams { in terms

of their players' shootout abilities { have equal chance of winning any time when the score is tied

at the beginning of any round, i.e., after equal numbers of attempts, under all state-symmetric

equilibria of the induced shootout game.5;6 Note that this property has implications only when the

score is tied at the beginning of a round but is silent when it is not tied. Thus, it implies ex-ante

fairness, i.e., an equal chance of winning at the beginning of the shootout at all state-symmetric

equilibria even following a totally unfair coin toss.

First, we characterize order-independent mechanisms in regular rounds in Theorem 1. All ex-

ogenous mechanisms that have a predetermined kicking-order pattern { with one exception { are

found to be order dependent, even if the sudden-death rounds were order independent for these

mechanisms, e.g., even if the winner were determined by an even coin 
ip in sudden death. There is

only one class ofexogenousorder-independent mechanisms, in which the kicking order after Round

1 is determined by an even coin 
ip in each round.

An important implication of this �nding is that, as ABAB and ABBA have exogenous orders,

regardless of the initial coin 
ip to determine which team goes �rst, they are both order dependent

in regular rounds.

The whole class of order-independent mechanisms in regular rounds has the feature that when

4See Apesteguia and Palacios-Huerta (2010) for evidence on the �rst kicking team winningsigni�cantly more

often. Kocher, Lenz, and Sutter (2012), on the other hand, dispute this �nding. Later Palacios-Huerta (2014) uses

a larger data set to �nd again a �rst-mover advantage (see also Figure A.1 in Appendix D.1).
5A precursor of our concept of order independence can be found in Che and Hendershott (2008), who use it for

only one round in which teams take turns.
6A state-symmetric equilibrium is a Markov perfect Bayesian equilibrium in which each kicker uses the same

strategy when the state of the game de�ned by the score di�erence and kicking order is (symmetrically for each

team) the same at the round he moves.
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the score is tied at the beginning of a round, the kicking order does not matter for that round.

Thus, we obtain order independence at the beginning of the shootouts.

On the other hand, all other order-independent mechanisms have anendogenous kicking-order

determination when score is not tied at the beginning of a round: the probability of which team

moves �rst in this round is the same for both teams whenever they are in each other'sshoes. E.g.,

consider two cases in which Team 1 is ahead 1� 0 and Team 2 is ahead 0� 1 at the beginning of

Round 2, respectively; then Team 1's probability of moving �rst in Round 2 in the �rst case is the

same as Team 2's probability of moving �rst in the second case. We refer to the class of mechanisms

that fully characterize the continuum of order-independent mechanisms in regular rounds asuneven
score symmetric.

Then we move from regular rounds to sudden-death rounds. That is, we consider order inde-

pendence in sudden-death rounds when the score is tied after regular rounds. Interestingly, as the

score is never uneven at the beginning of any sudden-death round, both ABAB and ABBA are

tautologically uneven score symmetric in sudden-death rounds. ABAB induces an in�nite game

such that each sudden-death round is a repetition of the previous one and the game only ends

when one team scores and the other does not. We show that ABAB is not order-independent in

sudden-death rounds for reasons very di�erent than those for regular rounds (Theorem 2). It turns

out that ABAB leads to multiplicity of equilibria as in that game: For every equilibrium in which

Team 1 wins more often, there is a dual equilibrium in which Team 1 and Team 2 players swap

their strategies, and hence Team 2 wins more often, and yet there is always an equilibrium in which

both teams win with equal probability.7

On the other hand, we show in Theorem 3 that alternating order of the teams as in ABBA

is enough to rule out asymmetric equilibria in which teams win with di�erent probabilities as

state-symmetric and to sustain order independence back. Then we provide a large class of order-

independent mechanisms in sudden-death rounds in Theorem 4.







for the two dimensional goal for tractability purposes to capture these nuances in revealed kicker

utility functions.

When we analyze our kicker optimal strategy, the resulting behavior mimics the empirical �nd-

ings using our utility function representation: kickers end up aiming at a safer spot instead of

goal-optimal spot so that they can avoid the higher likelihood outcome of kicking out. Therefore,

our utility function provides a rational explanation for this revealed kicker behavior.13

Besides this compelling evidence regarding penalty kick performance of kickers relying how a

goal is missed, the relevant literature also points out that overall players care about their own

performance, besides their team's outcome in other dynamic team contests. Chapsal and Vilain

(2019) provide evidence from international team squash tournaments that players care not only

about their team's win or loss, but also their individual performance.

3 Model

3.1 The Setup

Two football teams, which we refer to as Team 1 (T1 in mathematical notation) and Team 2 (T2

in mathematical notation), are facing o� in a penalty shootout. Each team shall taken sequential

rounds of penalty shots. Each round consists of one team kicking �rst, and, after observing the

outcome of that shot, the second team taking the next shot. If one team scores more goals than the

other at the end ofn rounds, then it wins the match. We refer to thesen rounds as theregular

rounds . Throughout the paper we will assume thatn = 2. This is su�cient to characterize order

independence and analyze the current scheme, ABAB, as well as other proposed mechanisms, such

as the alternating-order mechanism, ABBA. Thus, withn = 2, the analysis is tractable and yet rich

enough to capture the multi-round feature of penalty shootouts.14

decision because Ta�arel did go to his left, and he would never have got to the shot I planned. Unfortunately,

and I don't know how, the ball went up three meters and 
ew over the crossbar. I failed that time. Period.

And it a�ected me for years. It is the worst moment of my career. I still dream about it. If I could erase a

moment from my career, it would be that one."
13 We also infer from Baggio's quote in Footnote 12 that goalies typically feel the need to dive at the time the ball

is kicked. This is because, at the optimal speed-accuracy combinations of world-class kickers, the kicked ball typically

takes around 0.3 seconds to reach the goal line (see, e.g., Harford, 2006, Chiappori et al., 2002, and Palacios-Huerta,

2003), which is less than the total of (1) roughly 0.2 seconds' reaction time of the goalie to clearly recognize the kick

direction of the ball �rst, plus (2) the time during his dive to reach the expected arrival spot of the ball before it

reaches the goal plane. Hence, a goalie cannot a�ord to wait until he clearly observes the kick direction: to prevent

a goal with non-trivial probability, he must commit to pick a side to dive { or alternatively to stay in the middle.

As Baggio's quote also indicates, a shot aimed at the middle may be missed outright or may hit the feet or the legs

of the diving goalie that cover part of the middle; thus, the shot can be saved even if the goalie dives.
14We have n = 3 results in Appendix G, and no extra insight are obtained in this analysis. Similarly, we skip

n > 3 as the analysis becomes extremely cumbersome and lengthy. Although, we do not have a proof forn > 3, we

have no reason to suspect it would not generalize to this setting.
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If the shootout score is tied at the end ofn regular rounds, the format reverts tosudden death ;



Although so far we developed our theory taking football as our primary application, the insights

we discover apply to other contests and sports. In particular, we can classify penalty shootouts

as easy-task or di�cult-task based on the goal scoring probabilityPG(x). A shootout is easy if

PG(x) > 1
2 for all x 2 [0; x]. A shootout is di�cult if PG(x) < 1

2 for all x 2 [0; x]. A football

shootout is an example of an easy task, while a hockey shootout is an example of a di�cult task.
18 This distinction will not matter in our results until we discuss di�erent e�ciency notions and

practical design considerations in Appendix F. We assume that the shootout is either easy or

di�cult, but not mixed, throughout the paper. Thus, our analysis will focus on these two cases

throughout.

Function PO, on the other hand, is an increasing twice continuously di�erentiable convex func-

tion. Increasing PO is straightforward to motivate: the closer to the middle the ball is aimed,

the lower is the chance that the ball will go out. Single-peakedness ofPG is also easy to motivate:

Whenever the ball is aimed at lowx values, it can be saved with a higher chance by the diving goalie

(see Footnote 18 for hockey dynamics). For higherx values, although the goalie's chances of saving

the ball decrease as he may no longer be able to reach it, the chances of the ball going out increase.

Hence, it is easy to motivate the unique spotx, which maximizes the goal probability. We will refer

to it as the goal-optimal spot. Concavity of PG and convexity of PO are primarily assumed for

the tractability of our analysis, and do not play any other major role for the interpretation of our

results.

We assume that each kicker on both teams is identical in ability and has the same goal-scoring

and kicking-out probability.19

3.2 Shootout Mechanisms and the Shootout Game

A shootout mechanism is a function, � , that assigns a probability � (hk� 1; gT1 : gT2 ) to Team

1 kicking �rst in Round k, given the sequence of �rst-kicking teams in the �rstk � 1 rounds is

hk� 1 = ( hk� 1
r )k� 1

r =1 where hk� 1
r 2 f T1; T2g is the team that kicked �rst in Round r and gT1 : gTg

http://businessofhockey.wordpress.com/2015/01/04/a-deep-look-into-advanced-shootout-statistics/
http://businessofhockey.wordpress.com/2015/01/04/a-deep-look-into-advanced-shootout-statistics/


kicking teams in the previousk � 1 roundshk� 1, and feasible scoresgT1 : gT2 , the Nature determines

with probability � (hk� 1; gT1 : gT2 ) Team 1 kicking next �rst and probability 1 � � (hk� 1; gT1 : gT2 )

Team 2 kicking next �rst. Then a kicker of the �rst-kicking team takes the penalty shot, observing

the state and the history of the outcomes of all the shots up to that point as goal, out, or save.

The kicker aims at his intended spotx 2 [0; 1] to maximize his expected individual payo� (which

we explain in the next paragraph). Then the Nature determines with probability distribution

PG(x); PO(x); 1 � PG(x) � PO(x) whether the penalty kick results in a goal, goes out, or is saved,

respectively. After the outcome of this shot is observed, the other team's kicker takes a penalty

shot, observing the history of the outcomes of the shots up to that point. We continue until the

end of regular rounds, Roundk = n, similarly. If the score is tied after the last regular round,

sudden-death rounds take place until the tie is broken at the end of a sudden-death Roundk > n .



about others' kicks are only where the ball goes and whether the kick was a goal, out, or a save

in previous kicks, but not the intended spot towards which the ball was kicked. Hence, as a kicker

takes a penalty shot, he has a belief over intended spots of previous kicks. Formally, abelief � (H )

is a function that maps each information setH 2 H i;T k that Team k's i 'th kicker's move with

positive probability to a probability distribution over histories of actions taken that would lead to

the same information set.

3.3 Markov Perfection and State-Symmetric Equilibria

Our solution concept isstate-symmetric (perfect Bayesian) equilibrium, in which strategies in regular

rounds depend only on the state of the game, i.e., on the round number, kicking order, and score

di�erence; strategies in sudden-death rounds depend only on the current kicking order and score

di�erence. The strategies in state-symmetric equilibria are memoryless in that they depend only

on the current state.

A perfect Bayesian equilibrium in the game of shootout mechanism� is an assess-

ment, i.e., a strategy pro�le and a belief pro�le pair [X = ( X i;T k 0) i 2f 1;2;:::g;k02f 1;2g; � =

(� (H ))H 2H i;T k 0;i 2f 1;2;:::g;k02f 1;2g] such that for any k; ` 2 f 1; 2g s.t. k 6= `, i 2 f 1; 2; : : :g, and

H 2 H i;T k ;

ˆ spot X i;T k (H ) 2 [0;





We will determine whether ABAB's equilibria are order independent and inspect other plausible

mechanisms by characterizing the class of order-independent mechanisms in regular rounds and

providing a large class of order-independent mechanisms in sudden-death rounds.

4 Analysis: A Kicker's Optimization Problem

We �rst analyze each kicker's optimization problem for a given mechanism� and other agents'

strategies. The best response determination problem of thei 'th kicker of Team k, denoted by

� � (i; Tk), boils down to

max
x � 2 [0;1]

U� (x � ; WG;� ; WNG;� ) �
�

PG(x � )WG;� +[1 � PG(x � )]WNG;�

�
+

�
PG(x � )UG + PO(x � )UO

�
(2)

wherePG(x � )UG + PO(x � )UO is Kicker � 's expected individual kick payo�, and PG(x � )WG;� + [1 �

PG(x � )]WNG;� is Kicker � 's expected continuation team payo� given expected continuation values

WG;� conditional on he scores andWNG;� conditional on he does not score. These values,WG;� and W





� is exogenous if, for all rounds k, and kicking ordershk� 1 regarding the beginning of roundk,

� (hk� 1 : gT1 : gT2 ) = � (k) for some function � , i.e., who goes �rst in each round is determined
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Figure 1: The e�ort levels of teams under an order-independent mechanism is state-symmetric

equilibria in an easy shootout.

Corollary 1 Let � be an order-independent mechanism in regular rounds. Suppose e�ort levels,
i.e., the state-symmetric equilibrium intended spots, are denoted as follows:

ˆ In Round 1: (1) for �rst kicking team as





more aggressive when his team is ahead than behind as we explained previously. (It can also be

shown that with a similar argument Kicker 1 of penultimate round has exactly the same marginal

contribution as Kicker 2 when this round starts tied under uneven-score symmetric mechanisms.)

In particular, this is exactly why ABAB or ABBA, or any �xed-order mechanism is not order

independent: In the last round, as �rst kicking team is pre-determined and its kicker is more

aggressive when it is ahead than behind, the equalitiesp1
A = p2

A and p1
B = p2

B do no longer hold

(i.e., � 1 = ! 1B = ! 1E shown in Figure 1, no longer holds). Hence, even if the penultimate round

starts tied, there are possible state-symmetric equilibria in which the kickers of this round will

exert di�erent e�orts leading to di�erent winning chances for their teams at the beginning of the

penultimate round.

The theorem leads to another interesting point: There is only one class of order-independent

exogenous mechanisms; the post-Round-1 random-order mechanisms that determine which team

will kick �rst with an unbiased coin toss in each round after the �rst, while who goes �rst in Round

1 can be determined freely. We formalize it below, and it follows directly from Theorem 1.

Proposition 2 The class of post-Round-1 random-order mechanisms are the only exogenous mech-
anisms that are order independent.

Note that one does not need to treat both teams symmetrically all the time to obtain order

independence. In fact, when the score is tied, it does not matter which team kicks �rst. However,

when the score is not tied, teams need to be treated symmetrically. This feature opens the door for

some interesting practical mechanisms to be order independent. Two subclasses of such mechanisms

are the behind-�rst and ahead-�rst mechanisms. In behind �rst (ahead �rst), the team that is

behind (ahead) in score after a round kicks �rst in the next round, and otherwise the order of the

teams is determined in some other manner. There are also many other uneven score symmetric

mechanisms in which lotteries play a signi�cant role. For example, a lottery mechanism that forces

the behind team to go �rst in 75% of the time and also Team 1 always to go �rst 60% of the time

when the score is tied is also order independent.

Next we ask as the sudden-death rounds induce an in�nite game, what do order-independent

mechanisms look like in sudden-death rounds. It turns out that there order matters when the score

is tied unlike in regular rounds.

6 Sudden-death Rounds

Sudden-death analysis is substantially di�erent as regular-round analysis assumes that winning

chances are equal after they are over and score is still tied, while sudden-death rounds make the

game an in�nite game and tries to analyze what actually the winning chances are after regular

rounds.

Under ABAB or ABBA, one can have uneven scores, such as Team 1 being ahead, in an in-

termediate regular round. As we showed, however, they cannot satisfy uneven score symmetry of
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order-independent mechanisms in regular rounds. On the other hand, in the sudden-death rounds,

the score is never uneven at the beginning of a round. Suppose sudden death is reached in ABAB

and ABBA. Would they at least be order independent in sudden-death rounds? If not, what do

sudden-death order-independent mechanisms look like? We start with ABAB to answer these ques-

tions.

6.1 ABAB in Sudden-death Rounds

We will now characterize the state-symmetric equilibria of ABAB in the sudden-death rounds. As

the game is in�nite now, we will pedantically take the reader through the kickers' dynamic problem

as we did in Section 4 for a single round. Without loss of generality assume that Team 1 wins the

coin toss before Round 1 and kicks �rst throughout.

At state-symmetric equilibria, if they exist, each Team 1 kicker will use exactly the same action

when he kicks in the sudden-death rounds, as Team 1 always goes �rst and the score is tied at the

beginning of each sudden-death round. Similarly, by symmetry, each Team 2 kicker will use exactly

the same action when his team is behind (which can be by one goal at most), and he will use exactly

the same action when the score is even (which can happen if the preceding Team 1 kicker kicks out

or his kick is saved).

On the other hand, Team 1 and Team 2 kickers may potentially use di�erent actions at state-

symmetric equilibria, as they kick in di�erent orders: in each round Team 1 goes �rst and Team 2

goes second. Hence, if a state-symmetric equilibrium exists, for a givenk = 1; 2, the probability of

Team k winning is the same at the beginning of each sudden-death round.

At a state-symmetric equilibrium, let us de�ne VT1 to be the value function of Team 1, that is

the expected utility it contributes by winning or losing to its all kickers, in the �rst sudden-death

round. Denote byx the kicking strategy for Team 1's kickers. De�neV B
T2

as the value function of

Team 2 in the �rst sudden-death round when Team 2 is currently behind by one goal andV E
T2

as the

value function of Team 2 in the �rst sudden-death round when the score is currently even. Team

2's kickers' optimal kicking strategy in each scenario isyB and yE respectively.

We can write the followingBellman equation for VT1 :

VT1 = PG(x)WG;T1 + [1 re 7.5432/F41



For Team 2, we have

V B
T2

= PG(yB ) VT2|{z}
= W B

G;T 2

+[1 � PG(yB




Actually, for such a restriction to hold, we do not even need the teams to bein each other’s
shoes as frequently as in ABBA. In fact, there are uncountably many other mechanisms that are

order independent in sudden-death rounds:

Theorem 4 (Order-independent mechanisms) Take any mechanism � and any order-
independent mechanism ' . Fix a Sudden-death Round k. Construct a mechanism  such that
for sudden-death rounds from the beginning until Roundk � 1’s end, it uses� ’s order structure, and
for any other round, it uses ' ’s order structure. Formally,

ˆ for all ` such that n < ` < k , feasible scoresgT1 : gT2 , and beginning of Round ` kicking orders
h` � 1, let  (h` � 1; gT1 : gT2 ) = � (h` � 1; gT1 : gT2 ), and

ˆ for all ` � k and ` � n, feasible scoresgT1 : gT2 , and beginning of Round ` kicking orders h` � 1,
let  (h` � 1; gT1 : gT2 ) = ' (h` � 1; gT1 : gT2 ).

Then  is order independent.

We can use Theorem 4 recursively, to obtain a very large class of order-independent mechanisms.

The intuition of this result is as follows: Take the last round before order independence kicks in,

say Roundk. By backward induction, as teams are tied at the beginning of Roundk and in Round

k + 1 they have a 50%� 50% chance of winning, in all situations the two kickers of Roundk exert

the same e�ort regardless of kicking order (as we explained in the intuition behind Theorem 1).

Therefore, at the beginning of Roundk, both teams have an equal chance of winning as well. An

example of such a mechanism is a behind-�rst mechanism such that in the �rstn + 10 rounds Team

1 kicks �rst whenever the game is tied, and then we alternate the order. Note that in the �rst

10 sudden-death rounds Team 1 kicks �rst, and yet, the mechanism is order independent as it is

appended by an order-independent mechanism in sudden-death rounds, namely ABBA.

Although state-symmetric equilibria of ABAB in which teams exert di�erent e�ort are still

equilibria of ABBA, these equilibria are no longer state-symmetric under ABBA: If Team 1 kickers

always exert a higher e�ort than Team 2's in ABAB, now their position as �rst or second kickers

will alternate in ABBA. Thus, when the state is \kicking �rst," if it is a Team 1 kicker then he will

exert higher e�ort in the same state than Team 2 kicker, violating state symmetry.

7 Discussion: Order Independence vs Procedural Fairness

Order independence implies ex-ante fairness, and in our context they are both about the distribution

of state-symmetric equilibria. The starting team can be determined by alphabetical order of the

names of the teams and yet we can still obtain order independence. Thus, not only an even coin


ip to determine which team will start �rst is not needed, the existence of such coin 
ip does not

guarantee ex-ante fairness of the state-symmetric equilibrium outcomes. That is one other aspect

ABAB fails: it is not even ex-ante fair in this sense.
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However, there is a certain appeal of procedural fairness that an even coin 
ip determines which

team will start �rst. This appeal is not only aesthetic: procedural fairness matters, as there are



characterize easy shootout mechanisms, such as the ones in football, satisfying order independence

and maximization of the expected number of attempts together with the other two properties,

namely, simplicity and sudden-death equality of opportunity: The team that is behind in score



abnormalities surprisingly well through our approach of one parameter deviation from a model of

players with only outcome-oriented preferences.27

A Proofs of Proposition 1, Theorem 1, Corollary 1

Proof of Proposition 1. First observe that x solves Equation 4 whenUO = 0. As the partial

derivative w.r.t. UO on the (left-hand side of) �rst-order condition is P0
O(x �

` ) > 0(



By Equation 11, y2E solves the following �rst-order condition:

P0
G(y2E )

h
[PG(� ) � (1 � PG(� ))]

VW + VL

2
+ (1 � PG(� )) VW � PG(� )VL + UG

i
+ P0

O(y2E )UO = 0

=) P0
G(y2E )[

VW � VL

2
+ UG] + P0

O(y2E )UO = 0

Therefore,

y2E = � (16)

and VT2 ;P2 ;E = VW + VL
2 :

� When Team 2 is currently behind : Let y2B denote the optimal kicking strategy for Team 2's kicker

in Round 2 when Team 2 is currently behind. The value function for Team 2 is

VT2 ;P2 ;B = PG(y2B )PG(� )VL + PG(y2B ) (1 � PG(� ))
VW + VL

2
+ (1 � PG(y2B )) VL

y2B satis�es the following �rst-order condition:

P0
G(y2B )[PG(� )VL + (1 � PG(� ))

VW + VL

2
� VL + UG] + P0

O(y2B )UO = 0

=) P0
G(y2B )

�
(1 � PG(� ))

VW � VL

2
+ UG

�
+ P0

O(y2B )UO = 0

� When Team 2 is currently ahead : Let y2A denote the optimal kicking strategy for Team 2's kicker

in Round 2 when Team 2 is currently ahead. The value function for Team 2 is

VT2 ;P2 ;A = PG(y2A )VW + (1 � PG(y2A ))
�
(1 � PG(� ))VW + PG(� )

VW + VL

2

�

The optimal kicking strategy, y2A ; satis�es the following �rst-order condition:

P0
G(y2A )[VW � (1 � PG(� ))VW � PG(� )

VW + VL

2
+ UG] + P0

O(y2A )UO = 0

=) P0
G(y2A )[PG(� )

VW � VL

2
+ UG] + P0

O(y2A )UO = 0 (17)

As

PG(� ) >
1
2

=) y2A > y 2B : (18)

Moreover, sincePG(� ) < 1, Equations 15 and 17 imply

y2A < �: (19)

Case 2: When Team 1 kicks �rst in Round 2.Let x2E ; x2B ; and x2A denote the optimal kicking

strategy for Team 10s kicker in Round 2 when the score is even, when Team 1 is behind, and when

Team 1 is ahead respectively. By symmetry, we have the following results:

� When the score is currently even: The optimal kicking strategy is

x2E = y2E = �; (20)
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where

VT2 ;P2 ;B = PG(y2B )PG(� )VL + PG(y2B )(1 � PG(� ))
VW + VL

2
+ (1 � PG(y2B ))VL

=
VW + VL

2
�

�
1 � PG(y2B )(1 � PG(� ))

� VW � VL

2

VT1 ;P2 ;A = PG(x2A )VW + (1 � PG(x2A ))
�
(1 � PG(� ))VW + PG(� )

VW + VL

2

�

=
VW + VL

2
+ [1 � (1 � PG(x2A ))PG(� )]

VW � VL

2

We substitute the equations ofVT2 ;P2 ;B and VT1 ;P2 ;A into VT2 ;P1 ;B as follows:

VT2 ;P1 ;B =
VW + VL

2
� (1 � PG(y1B ))

h
(1 � � (T1; 1 : 0))[1� PG(y2B )(1 � PG(� ))

�

+ � (T1; 1 : 0)[1� (1 � PG(x2A ))PG(� )]
i VW � VL

2

The optimal kicking strategy, y1B ; satis�es the following �rst-order condition:

P0
G(y1B )[� 2

VW � VL

2
+ UG] + P0

O(y1B )UO = 0; (23)

where

� 2 = (1 � � (T1; 1 : 0))[1� PG(y2B )(1 � PG(� ))] + � (T1; 1 : 0)[1� (1 � PG(x2A ))PG(� )]

Then y1B = y1E i� � 1 = � 2 i�

� (T1; 0 : 1)[1� PG(x2B )(1 � PG(� ))] + (1 � � (T1; 0 : 1))[1� (1 � PG(y2A ))PG(� )]

= (1 � � (T1; 1 : 0))[1� PG(y2B )(1 � PG(� ))] + � (T1; 1 : 0)[1� (1 � PG(x2A ))PG(� )]

() (1 � � (T1; 0 : 1) � � (T1; 1 : 0))[1� (1 � PG(y2A ))PG(� )]

= (1 � � (T1; 0 : 1) � � (T1; 1 : 0))[1� PG(x2B )(1 � PG(� ))]

() (1 � � (T1; 0 : 1) � � (T1; 1 : 0))[(1 � PG(y2A ))PG(� ) � PG(x2B )(1 � PG(� ))] = 0

However, (1� PG(y2A ))PG(� ) � PG(x2B )(1 � PG(� )) > 0 asx > � > x 2B and y2A < �: Accordingly,

y1B = y1E () � (T1; 0 : 1) + � (T1



The optimal kicking strategy, x1; satis�es the following �rst-order condition:

P0
G(x1)

h�
(1 � PG(y1B )) � 2 + PG(y1E )� 1

� VW � VL

2
+ UG

i
+ P0

O(x1)UO = 0

Therefore

x1 R y1E () (1 � PG(y1B )) � 2 R (1 � PG(y1E )) � 1 (25)

On the other hand, we have

VT1 =
VW + VL

2
() PG(x1)(1 � PG(y1B )) � 2 = (1 � PG(x1))PG(y1E )� 1

Given that both teams have an equal chance of winning in sudden-death rounds andVT2 ;P2 ;E =

VT1 ;P2 ;E = VW + VL
2 ; � is order independent if and only ifVT1 = VW + VL

2 : We �rst make the following

claim:

Claim 1. PG(x1)(1 � PG(y1B )) � 2 = (1 � PG(x1))PG(y1E )� 1 if and only if (1 � PG(y1B )) � 2 =

(1 � PG(y1E )) � 1:

Proof of Claim 1. ( =) ) Suppose to the contrary that (1� PG(y1B )) � 2 6= (1 � PG(y1E )) � 1

but PG(x1)(1 � PG(y1B )) � 2 = (1 � PG(x1))PG(y1E )� 1: If (1 � PG(y1B )) � 2 > (1 � PG(y1E )) � 1;

then from the �rst-order condition of x1 we havex > x 1 > y 1E : Then PG(x1)(1 � PG(y1B )) � 2 >

PG(y1E )(1 � PG(y1B )) � 2 > P G(y1E )(1 � PG(y1E )) � 1 > (1 � PG(x1))PG(y1E )� 1; a contradiction. The

other case can be analyzed in a similar fashion.

( ( = ) If (1 � PG(y1B )) � 2 = (1 � PG(y1E )) � 1; then from the �rst-order condition of x1 we have

x1 = y1E ; which in turn implies

PG(x1)(1� PG(y1B )) � 2 = PG(y1E )(1� PG(y1B )) � 2 = PG(y1E )(1� PG(y1E )) � 1 = (1 � PG(x1))PG(y1E )� 1

Hence the Claim is established.�

Accordingly, � is order independent if and only if

(1 � PG(y1B )) � 2 = (1 � PG(y1E )) � 1: (26)

This equality holds for an arbitrary pair of (feasible) probabilities,f PG; POg; if and only if � 1 = � 2;

which holds if and only if � (T1; 0 : 1) + � (T1; 1 : 0) = 1; i.e., � is uneven score symmetric:

Proof of Corollary 1. It can readily be seen from the proof of Theorem 1 that the optimal

kicking strategy at that state is solely determined bythe state (the score di�erence and the kicking

order in Round 2), and hence is independent of which order-independent mechanism leads to that

state. W.l.o.g., suppose Team 1 moves �rst in Round 1 and Team 2 moves second. Consider Round

1 �rst. Equation 24 in the proof of Theorem 1 implies that! 1E = ! 1B . Equations 25 and 26 imply

that � 1 = ! 1E . Next consider Round 2. Equation 15 implies that! 2B = ! 2E . Equations 15 and

16 when Team 1 moves second in Round 2 and Equation 20 when Team 1 moves �rst in Round 1

imply that � 2E = ! 2E . For an easy shootout, Equations 18 and 19 when Team 1 moves second in

Round 2 and Equations 21 and 22 when Team 1 moves �rst in Round 2 imply that� 2E > � 2A > � 2B .

(where easiness of the shootout is only used in Equation 18, for a di�cult shootout, we would have

� 2E > � 2B > � 2A ): Finally, Equations 15 and 23 and the fact that� 2 < 1 imply ! 1B < ! 2B .
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B Order Dependence of ABAB in Sudden-death Rounds

Theorem 6 (Order dependence of ABAB in sudden-death rounds) Suppose that in the
sudden-death rounds of ABAB a state-symmetric interior equilibrium exists. Then

ˆ Multiple state-symmetric equilibria exist if and only if there are multiple solutions � to the
equation

�( � ) � � �
1 � PG

�
y(1 � � )

�

2 � PG
�
y(� )

�
� PG

�
y(1 � � )

� = 0; (27)

where y(� ) = f � 1
�

� UO
(VW � VL )� + UG

�
for f (x) = P0

G(x)=P0
O(x) for all x 2 [0; 1].

ˆ �( � ) = 0 has multiple solutions if

UG

VW � VL
<

�
ln

�
1 � PG(x)

� � 0



Thus, ABAB is not order independentas the winning probability of Team 1,� 6= 1
2 in equilib-

rium, wheneveryB 6= yE .

On the other hand, the su�ciency condition in Equation 28
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C Remaining Proofs of Results

Proof of Theorem 2.

We write the three �rst-order conditions using Equation 11 (or 3) as:

P0
G(x)[PG(yB )VT1 + (1 � PG(yB ))VW � PG(yE )VL � (1 � PG(yE ))VT1 + UG] + P0

O(x)UO = 0

P0
G(yB )[VT2 � VL + UG] + P0

O(yB )UO = 0

P0
G(yE )[VW � VT2 + UG] + P0

O(yE )UO = 0

We �rst prove that x = yE in any state-symmetric equilibrium.

Claim 1. x = yE .

Proof of Claim 1. De�ne

� = PG(yB )VT1 + (1 � PG(yB ))VW � PG(yE )VL � [1 � PG(yE )]VT1 � VW + VT2 :

From the �rst-order conditions of x and yE , x � yE if and only if � � 0: Recall that the winning

probability of Team 1 in equilibrium, � , is given in Equation 13. Hence,

� = PG(yB )(VT1 � VW ) + PG(yE )(VT1 � VL ) + VT2 � VT1

= PG(yB )(1 � � )(VL � VW ) + PG(yE )� (VW � VL ) + (1 � 2� )(VW � VL )

= [ � PG(yB )(1 � � ) + PG(yE )� + 1 � 2� ](VW � VL )

= [1 � PG(yB ) + ( PG(yE ) + PG(yB ) � 2)� ](VW � VL )

We substitute � from Equation 13 as follows:

� = [1 � PG(yB ) + ( PG(yE ) + PG(yB ) � 2)
PG(x)(1 � PG(yB ))

PG(x)(1 � PG(yB )) + (1 � PG(x))PG(yE )
](VW � VL )

= (1 � PG(yB ))[1 +
(PG(yE ) + PG(yB ) � 2)PG(x)

PG(x)(1 � PG(yB )) + (1 � PG(x))PG(yE )
](VW � VL )

= [
(1 � PG(yB ))( VW � VL )

PG(x)(1 � PG(yB )) + (1 � PG(x))PG(yE )
]

� [PG(x)(1 � PG(yB )) + (1 � PG(x))PG(yE ) + ( PG(yE ) + PG(yB ) � 2)PG(x)]

=
(1 � PG(yB ))( VW � VL )

PG(x)(1 � PG(yB )) + (1 � PG(x))PG(yE )
[PG(yE ) � PG(x)]
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Supposex > y E , then as both x; y



optimal kicking strategy for the �rst kicker in each sudden-death round, andxB (xE ) the optimal

kicking strategy for the second kicker in each sudden-death round when the score is behind (tied).

Let VT1 (VT2 ) denote Team 1's (Team 2's) value function at the beginning of the �rst sudden-death

round (Round n + 1). Then

VT1 = [ PG(x I )PG(xB ) + (1 [3o6-F64 5.9776 Tf 4.93 -1.107 Td [(1)]TJ/F44 11.9552 Tf 8.344 2.9 TV(xB ) + (1



Plugging in the expression of
 and doing some simpli�cations, we have

� IE =
PG(x I )(1 � PG(xB )) � PG(xB )(1 � PG(xE ))

2 � (1 � PG(x I ))PG(xE ) � PG(x I )(1 � PG(xB ))
(VW � VL )

We can then conclude thatx I T xE if and only if x I T xB . Next we comparex I and xB : De�ne

� IB = [ PG(xB ) � (1 � PG(xE ))]VT2 + (1 � PG(xB ))VW � PG(xE )VL � (VT1 � VL )



as the continuation value under the order-independent mechanism in Roundk. Supposex is Team

1's kicker's optimal spot, yE is Team 2's kicker's optimal spot when they are still tied, andyB is

Team 1's kicker's optimal spot when Team 1 is ahead (by one goal). Recall the �rst-order conditions

through Equation 11 (or 3):

P0
G(x)[PG(yB )VT1 + (1 � PG(yB ))VW � PG(yE )VL � (1 � PG(yE ))VT1 + UG] + P0

O(x)UO = 0

P0
G(yB )[VT2 � VL + UG] + P0

O(yB )UO = 0

P0
G(yE )[VW � VT2 + UG] + P0

O(yE )UO = 0

We rewrite Team 2's kicker's �rst-order conditions plugging inVT1 = VT2 :

P0
G(yB )[

VW � VL

2
+ UG] + P0

O(yB )UO = 0

P0
G(yE )[

VW � VL

2
+ UG] + P0

O(yE )UO = 0



As y(� ) = f � 1
�

� UO
(VW � VL )� + UG

�
and f (x) = P0

G(x)=P0
O(x); y0

�
1
2

�
can be computed as:

y0

�
1
2

�
=

1
f 0(y(� ))

(VW � VL )UO

((VW � VL )� + UG)2

�
�
�
�
�
� = 1

2

=

�
P0

O(y
�

1
2

�
)
� 2

P00
G(y

�
1
2

�
)P0

O(y
�

1
2

�
) � P00

O(y
�

1
2

�
)P0

G(y
�

1
2

�
)

�
(VW � VL )UO

�
(VW � VL ) 1

2 + UG
� 2 :

Also we have

y
�

1
2

�
= f � 1

�
� UO

(VW � VL ) 1
2 + UG

�
=) (VW � VL )

1
2

+ UG = �
P0

O

�
y( 1

2)
�

P0
G

�
y

�
1
2

� � UO:

Then

y0

�
1
2

�
=

�
P0

O(y( 1
2))

� 2

P00
G(y

�
1
2

�
)P0

O(y( 1
2)) � P00

O(y
�

1
2

�
)P0

G(y( 1
2))

�
VW � VL

(VW � VL ) 1
2 + UG

�
� P0

G

�
y

�
1
2

� �

P0
O

�
y

�
1
2

� �

=
� P0

O(y
�

1
2

�
)P0

G(y
�

1
2

�
)

P00
G(y

�
1
2

�
)P0

O(y( 1
2)) � P00

O(y
�

1
2

�
)P0

G(y
�

1
2

�
)

�
VW � VL

(VW � VL ) 1
2 + UG

;

and

� 0(� )j � = 1
2

= 1 �
P0

G

�
y

�
1
2

� �

2
�
1 � PG

�
y

�
1
2

� �� �
� P0

O(y
�

1
2

�
)P0

G(y
�

1
2

�
)

P00
G(y

�
1
2

�
)P0

O(y( 1
2)) � P00

O(y
�

1
2

�
)P0

G(y
�

1
2

�
)

�
VW � VL

(VW � VL ) 1
2 + UG

:

Therefore � 0(� )j � = 1
2

< 0 if and only if

1 +
2UG

VW � VL
<

� P0
G

�
y

�
1
2

� �

1 � PG
�
y

�
1
2

� � �
P0

O(y( 1
2))P0

G(y
�

1
2

�
)

P00
G(y( 1

2))P0
O(y

�
1
2

�
) � P00

O(y( 1
2))P0

G(y
�

1
2

�
)

() 1 +
2UG

VW � VL
<

(ln(1 � PG(x))) 0

(ln f (x))0

�
�
�
�
�
x= y( 1

2 )
:

D Field Evidence

D.1 Shootout Winning Percentages in Major Tournaments
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Figure 2: Empirical Evidence from Table 5.1 in Palacios-Huerta (2014) and Table 1 in Kocher,

Lenz, and Sutter (2012): The winning proportions of �rst-kicking teams are given on the vertical

axis while the numbers of shootouts in the considered championships are given on the horizontal

axis. Euro int refers to combined proportion for all European international championships such as

European Championship, Champions League, Cup Winners Cup, and UEFA Cup. Observe that

as sample size increases (i.e., data points 50 or more) second-mover advantage disappears in major

football data tournaments. While there is undisputed �rst-mover advantage in Spanish Cup, Euro

int and English Cup display somewhat �rst-mover advantage, and German Cup displays neither

�rst- nor second-mover advantage. We also thank Martin Kocher, Marc Lenz, and Matthias Sutter

for providing us their data set.
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D.2 ABBA vs ABAB in the Field

Recently ABBA replaced ABAB at the U-17 Women's and Men's World Football Championships.

The International Football Association Board (IFAB) decided to implement the ABBA sequence

in various trials before eventually using it in Women's World Cup. In addition, the ABBA format

for penalty shootouts is adopted in all English Football League (EFL) competitions in 2017-18,29

and recently in Dutch Cup in 2018-19, while the rest of the world still uses ABAB as of this

writing. In dynamic individual contests too, we observe that the ABBA format being utilized. It is

used in the U.S. presidential debate sequences. Similarly, FIDE, the governing body of chess, has

recently changed the rules for the FIDE World Chess Championship and switched from ABAB to



players, i.e., the player has a higherPG(x) and a lowerPO(x) for every x 2 [0; 1]. We formally de�ne

a better player as follows: Let f PG; POg represent all players' kicking ability except the better

player, and f ePG; ePOg represent the better player's kicking ability. We assume (a)PG(x) < ePG(x)

and PO(x) > ePO(x); and (b) P 0
G (x)

eP 0
G (x)

= P 0
O (x)

eP 0
O (x)

for all x 2 [0; 1]. We show that the team with this

better player { now named thebetter team { has a higher winning probability under uneven score

symmetric mechanisms.

Theorem 7 [Uneven teams] Suppose a mechanism that is order independent in sudden-death
rounds and uneven score symmetric in regular rounds is used in the shootout. Then a better team
has a higher ex-ante chance of winning at the unique state-symmetric equilibrium of the shootout
induced by this mechanism, if the better player is used strategically in the best kicking order possible
by the better team.

Proof of Theorem 7. We show that by having the better player kick in Round 1, the better

team has a higher chance of winning under an uneven score symmetric mechanism. Consider two

subcases:

(i) When the better player is in Team 2. Since the better player is placed in Round 1,

the second-round maximization problems remain unchanged. Following the proof of Theorem 1, we

havex2A = y2A > x 2B = y2B ; and the last kicker's optimal kicking strategy is�: Next we study the

second team's optimal kicking strategy in Round 1. When Team 1 does not score in Round 1, the

value function for TeamP
P

P



The optimal kicking strategy, y1E ; satis�es the following �rst-order condition:

eP0
G(y1E )[� 1

VW � VL

2
+ UG] + eP0

O(y1E )UO = 0; where

� 1 = � (T1; 0 : 1)[1� PG(x2B )(1 � PG(� ))] + (1 � � (T1; 0 : 1))[1� (1 � PG(y2A ))PG(� )]:

When Team 1 scores in Round 1, the value function for Team 2 is

VT2 ;P1 ;B = ePG(y1B )
VW + VL

2
+(1 � ePG(y1B ))

�
(1� � (T1; 1 : 0))VT2 ;P2 ;B + � (T1; 1 : 0)(VW + VL � VT1 ;P2 ;A )

�
;

where

VT2 ;P2 ;B = PG(y2B )PG(� )VL + PG(y2B )(1 � PG(� ))
VW + VL

2
+ (1 � PG(y2B ))VL

=
VW + VL

2
� [1 � PG(y2B )(1 � PG(� ))]

VW � VL

2

VT1 ;P2 ;A = PG(x2A )VW + (1 � PG(x2A ))[(1 � PG(� ))VW + PG(� )
VW + VL

2
]

=
VW + VL

2
+ [1 � (1 � PG(x2A ))PG(� )]

VW � VL

2

We substitute the equations ofVT2 ;P2 ;B and VT1 ;P2 ;A into VT2 ;P1 ;B as follows:

VT2 ;P1 ;B =
VW + VL

2
� (1 � ePG(y1B ))

h
(1 � � (T1; 1 : 0))[1� PG(y2B )(1 � PG(� ))]

+ � (T1; 1 : 0)[1� (1 � PG(x2A ))PG(� )]
i VW � VL

2

The optimal kicking strategy, y1B ; satis�es the following �rst-order condition:

eP0
G(y1B )

"
h�

(1 � � (T1; 1 : 0))[1� PG(y2B )(1 � PG(� ))]

+ � (T1; 1 : 0)[1� (1 � PG(x2A ))PG(� )
� i VW � VL

2
+ UG

#

+ eP0
O(y1B )UO = 0

Given that y2B = x2B and x2A = y2A ; the �rst-order condition can be rewritten as

P0
G(y1B )[� 2

VW � VL

2
+ UG] + P0

O(y1B )UO = 0; where

� 2 = (1 � � (T1; 1 : 0))[1� PG(x2B )(1 � PG(� ))] + � (T1; 1 : 0)[1� (1 � PG(y2A ))PG(� )]:

Under an order-independent mechanism,� (T1; 0 : 1) + � (T1; 1 : 0) = 1; and we have� 1 = � 2:

Accordingly, y1E = y1B : Finally, we solve for Team 1's optimal kicking strategy in Round 1. The

value function for Team 1 is

VT1 = PG(x1)[VW + VL � VT2 ;P1 ;B ] + (1 � PG(x1))[VW + VL � VT2 ;P1 ;E ]

= VW + VL � PG(x1)VT2 ;P1 ;B � (1 � PG(x1))VT2 ;P1 ;E

=
VW + VL

2
+ [ PG(x1)(1 � ePG(y1B )) � 2 � (1 � PG(x1)) ePG(y1E )� 1]

VW � VL

2

43



The optimal kicking strategy, x1; satis�es the following �rst-order condition:

P0
G(x1)

h�
(1 � ePG(y1B )) � 2 + ePG(y1E )� 1

� VW � VL

2
+ UG

i



condition, the three optimal kicking strategies in Round 1 are the same:x1 = y1E = y1B (see

Corollary 1) and they are determined by the following �rst-order condition:

P0
G(x1)[� 1

VW � VL

2
+ UG] + P0

O(x1)UO = 0; where

� 1 = � (T1; 1 : 0)[1� (1 � PG(y2A ))PG(� )] + (1 � � (T1; 1 : 0))[1� PG(x2B )(1 � PG(� ))] :

Hence the higher the value of� 1; the higherx1. As x2B < � , which is Round 2 second kicking team's

intended spot, andy2A < �; we obtain 1� PG(x2B )(1 � PG(� )) > 1� (1 � PG(y2A ))PG(� ): Therefore

maximum x1 is achieved in an order-independent mechanism when� (T1; 1 : 0) = 0; i.e., when� is

a behind-�rst mechanism. On the other hand, minimumx1 is achieved when� (T1; 1 : 0) = 1; i.e.,

when � is an ahead-�rst mechanism.

The intuition behind this result can be summarized as follows for behind �rst (ahead �rst is

symmetric). First we summarize the incentives facing Round 2 kickers. In Round 2, kicking �rst is

not good at all for higher goal e�orts: the �rst-kicking team's player (if his team is either behind or

ahead) will always exert less e�ort than he would in the case when he kicks second in Round 2. This

is true because his marginal contribution will be less in the �rst case, as the other team's kicker {

who will go second { can always miss or o�set the �rst kicker's failure. So he has higher incentives

to shirk when he kicks �rst. Now, we turn our attention to Round 1 kickers' marginal contributions

under both mechanisms. First, observe that both teams' kickers under any uneven score symmetric

mechanism exert the same e�ort in Round 1, by Corollary 1. Therefore, understanding the �rst-

kicking team player's incentives is su�cient to draw the di�erence between the two mechanisms

regardless of the kicking order or score during Round 1. A Round 1 kicker, if he does not exert high

e�ort under behind �rst, may cause his team to fall behind with higher probability. This causes

his teammate to shirk more, when he goes �rst, and the other team's second player to exert higher

e�ort, when he goes second in Round 2. On the other hand, under ahead �rst, the Round 1 kicker's

incentives are exactly the opposite! If he does not exert high e�ort in Round 1, his team may fall

behind with higher probability, but his teammate will exert relatively higher e�ort under ahead �rst

by going second in Round 2 (with respect to behind �rst) and the other team's second kicker will

exert less e�ort in Round 2 (with respect to behind �rst). Hence, Round 1 kicker's possible failure

can still be salvaged with higher probability under ahead �rst. So he shirks under ahead �rst vis-a-

vis behind �rst. Therefore, behind �rst dominates any random (i.e., convex combination of ahead

�rst and behind �rst) and ahead-�rst mechanisms among all uneven score symmetric mechanisms.

On the other hand, observe that ahead �rst and behind �rst cannot be compared with each other

in Round 2 whenever the score is not tied: in ahead �rst when Team 1 is ahead, Team 1 kicks

�rst while in behind �rst, it kicks second under the same scenario. So there are no two comparable

information sets that are reached with positive probability under both mechanisms in Round 2.

When the score is tied however, all uneven score symmetric mechanisms lead to the same goal

e�orts and are equivalent in Round 2. Thus, round by round we are not able to establish an e�ort

ranking among di�erent order-independent shootout mechanisms. Nevertheless, we can still obtain





does not take a kick if the ahead team moves �rst and scores or the behind team moves �rst and

misses. Given that in an easy shootout the probability of scoring is higher than the probability of

missing, this probability is minimized under behind �rst. Hence, overall, behind �rst maximizes the

expected number of attempts among all order-independent mechanisms. The intuition is reversed

for di�cult shootouts. Although behind-�rst mechanisms have nice features when the score is

uneven, as mentioned before they are silent on how to de�ne the kicking order when the score is

tied. Order independence in regular rounds, by our characterization in Theorem 1, is also mute

on this issue, but reversing the kicking order is a sure way of establishing order independence in

sudden-death rounds (Theorem 3). ABBA, which is not order independent in regular rounds since

it does not satisfy uneven score symmetry, does possess a nice property: When the score is tied in

most crucial rounds, i.e., in sudden-death rounds, it gives both teams an equality of opportunity

of kicking �rst. Clearly, such an equality-of-opportunity property is nowhere more important than



mechanism in sudden-death rounds: Team 1 kicks �rst in Roundr as long as the score is tied or

Team 1 is behind in Roundr � 1 ; once Team 2 falls behind after some Roundr 0 > r , Team 2

kicks �rst until Team 1 falls behind in score after some Roundr 00> r 0, after which Team 1 kicks

�rst. One can improve on such a patchy mechanism by requiring that such an eclecticism should be

eliminated. We will introduce two properties such that the latter uses the former in its de�nition to

formalize this intuition of simplicity. Before introducing the �rst property, we formally introduce

how an order pattern can be recognized in a mechanism:

A �nite machine representation of a mechanism is a triple (Q; A; t ) such that

ˆ Q is a �nite set of (machine) states such that state q = ( Tk)w 2 Q denotes that Team

k taking the �rst penalty shot in the round associated with this state andw is just an

index number. Thus,Q can be partitioned into two asQT1 = f (T1)1; : : : ; (T1)w1 g and QT2 =

f (T2; : : : ; (T2)w2 g for somew1 and w2 as the sets of states in which Team 1 and Team 2 kick

�rst, respectively.

ˆ A = f (g1 : g2)g is the set ofpossible scores .

ˆ t : Q [ f;g � A � Q ! [0; 1] is a state transition probability function such that
P

q02 Q t(q;(g1 : g2); q0) = 1 for all q 2 Q [ f;g and (g1 : g2) 2 A. Here, t(q;(g1 : g



di�erences are the same. For example, the alternating-order behind-�rst mechanism has this type

of a representation as shown in Figure 3. We state the following proposition whose proof is given

Figure 3: The state transition representation for the alternating-order behind-�rst mechanism.

Transitions from the start of the shootout are omitted for simplicity. In general one of the two

states in the �gure will be chosen randomly with an unbiased lottery. Alternating-order ahead

�rst's representation is symmetrically de�ned.

in the �gure for behind �rst:

Proposition 5 The alternating-order behind-�rst (ahead-�rst) mechanism is stationary.

Machine representations can be used to measure the complexity of an algorithm.35 However,

very complicated mechanisms can also be stationary.36 On the other hand, if we would like to

have a chance of both teams kicking �rst in at least one round, we need at least two states, one

Team-1-kicking-�rst state and one Team-2-kicking-�rst state. Thus, jQj



during a game necessitates replay of the game. Shootout mechanisms that satisfy the simplicity

property will make the process easier to administer for the referees and will make the process less

prone to rule violations. We see simplicity as a vital requirement of a real-life shootout mechanism.

The current mechanism satis�es simplicity but none of the other properties we have introduced in

this paper. We formalize the simplicity of the alternating-order behind �rst (ahead �rst) with the

following proposition. We gave its proof earlier through Figure 3:

Proposition 6 The alternating-order behind-�rst (ahead-�rst) mechanism is simple.

We state the main result of this appendix as follows (which was stated as Theorem 5 in Discussion

section of the main text).

Theorem 8 In an easy shootout, alternating order behind �rst is the unique order-independent
mechanism that maximizes the expected number of attempts and satis�es simplicity and sudden-
death equality of opportunity. On the other hand, in a di�cult shootout, alternating order ahead
�rst is the unique order-independent mechanism that maximizes the expected number of attempts
and satis�es simplicity and sudden-death equality of opportunity.

Proof of Theorem 8. Observe that the mechanisms that satisfy the properties should be

behind-�rst, since behind-�rst mechanisms are the only ones that satisfy order independence and

maximizing expected number of attempts (by Proposition 4). The mechanisms that satisfy the

sudden-death equality of opportunity (SDEO from now on) have to have each team kicking �rst in

every two sudden-death rounds exactly once. Hence, the only kicking order that is simple and SDEO

in the sudden-death rounds is alternating-order. Stationarity (as implied by simplicity) implies that

the order of kicking switches when the score stays even between two rounds { i.e., if the state was

reached after a tie in score, the order switches after this state if the tied score continues. But this

does not imply how the kicking order changes if we transition to a tied score from an uneven score.

Simplicity implies that we have two states asQ = f (T1)1; (T2)1g. Thus, we need to use the same

states of sudden-death rounds also in the regular rounds. Hence, as kicking order switches when

the score is tied, i.e. we transition from (T1)1 to (T2)1 or the other way around in the sudden-death



that satis�es all properties but is not simple is a Prouhet-Thue-Morse behind-�rst (ahead-�rst)

mechanism for easy (di�cult) shootouts.

Finally, an interesting and relevant question is whether the behind-�rst feature has been used

in real life. Perhaps it is nowhere more blatant and e�ectively at work than in the rules of





where

� 2;2;(1;1) = � 3(1; 2)� 3;1;(1;2) + (1 � � 3(1; 2))� 3;1;(2;1)

The optimal kicking strategy, x2;2;(1;1); satis�es the following �rst-order condition:

P0
G(x2;2;(1;1))[� 2;2;(1;1)

VW � VL

2
+ UG] + P0

O(x2;2;(1;1))UO = 0

When s = (2 ; 1); the value function for the kicker is

V2;2;(2;1) = PG(x2;2;(2;1))
VW + VL

2
+ (1 � PG(x2;2;(2;1)))[ � 3(2; 1)(VW + VL � V3;1;(2;1)) + (1 � � 3(2; 1))V3;1;(1;2)]

=
VW + VL

2
� (1 � PG(x2;2;(2;1))) � 2;2;(2;1)

VW � VL

2
;

where

� 2;2;(1;0) = � 3(2; 1)� 3;1;(2;1) + (1 � � 3(2; 1))� 3;1;(1;2):

The optimal kicking strategy, x2;2;(2;1); satis�es the following �rst-order condition:

P0
G(x2;2;(2;1))[� 2;2;(1;0)

VW � VL

2
+ UG] + P0

O(x2;2;(2;1))UO = 0

When s = (0 ; 1); the value function for the kicker is

V2;2;(0;1) = PG(x2;2;(0;1))VW + (1 � PG(x2;2;(0;1)))[ � 3(0; 1)(VW + VL � V3;1;(0;1)) + (1 � � 3(0; 1))V3;1;(1;0)]

=
VW + VL

2
+ � 2;2;(0;1)

VW � VL

2
;

where

� 2;2;(0;1) = PG(x2;2;(0;1)) + (1 � PG(x2;2;(0;1)))[ � 3(0; 1)� 3;1;(0;1) + (1 � � 3(0; 1))� 3;1;(1;0)]:

The optimal kicking strategy, x2;2;(0;1); satis�es the following �rst-order condition:

P0
G(x2;2;(0;1))f [1 � [� 3(0; 1)� 3;1;(0;1) + (1 � � 3(0; 1))� 3;1;(1;0)]]

VW � VL

2
+ UGg + P0

O(x2;2;(0;1))UO = 0

When s = (2 ; 0); the value function for the kicker is

V2;2;(2;0) = PG(x2;2;(2;0))[� 3(2; 1)(VW + VL � V3;1;(2;1)) + (1 � � 3(2; 1))V3;1;(1;2)] + (1 � PG(x2;2;(2;0)))VL

=
VW + VL

2
� � 2;2;(2;0)

VW � VL

2
;

where

� 2;2;(2;0) = PG(x2;2;(2;0))[� 3(2; 1)� 3;1;(2;1) + (1 � � 3(2; 1))� 3;1;(1;2)] + 1 � PG(x2;2;(2;0)):

The optimal kicking strategy, x2;2;(2;0); satis�es the following �rst-order condition:

P0
G(x2;2;(2;0))f [1 � [� 3(2; 1)� 3;1;(2;1) + (1 � � 3(2; 1))� 3;1;(1;2)]]

VW � VL

2
+ UGg + P0

O(x2;2;(2;0))UO = 0
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Round 2, First Kick. When s = (0 ; 0) or s = (1 ; 1); the value function for the team isVW + VL
2 :

When s = (0 ; 1), the value function for the kicker is

V2;1;(0;1) = PG(x2;1;(0;1))(VW + VL � V2;2;(1;1)) + (1 � PG(x2;1;(0;1)))( VW + VL � V2;2;(0;1))

=
VW + VL

2
� � 2;1;(0;1)

VW � VL

2
;

where

� 2;1;(0;1) = PG(x2;1;(0;1))PG(x2;2;(1;1))� 2;2;(1;1) + (1 � PG(x2;1;(0;1))) � 2;2;(0;1):



where

� 1;2;(1;0) = � 2(1; 0)� 2;1;(1;0) + (1 � � 2(1; 0))� 2;1;(0;1):

The optimal kicking strategy, x1;2;(1;0); satis�es the following �rst-order condition:

P0
G(x1;2;(1;0))[� 1;2;(1;0)

VW � VL

2
+ UG] + P0

O(x1;2;(1;0))UO = 0:

Round 1, First Kick. The value function for the kicker is

V1;1;(0;0) = PG(x1;1;(0;0))[VW + VL � V1;2;(1;0)] + (1 � PG(x1;1;(0;0)))[VW + VL � V1;2;(0;0)]

=
VW + VL

2
+ [ PG(x1;1;(0;0))(1 � PG(x1;2;(1;0))) � 1;2;(1;0)

� (1 � PG(x1;1;(0;0)))PG(x1;2;(0;0))� 1;2;(0;0)]
VW � VL

2

The optimal kicking strategy, x1;1;(0;0); satis�es the following �rst-order condition:

P0
G(x1;1;(0;0))

h�
(1� PG(x1;2;(1;0))) � 1;2;(1;0) + PG(x1;2;(0;0))� 1;2;(0;0)

� VW � VL

2
+ UG

i
+ P0

O(x1;1;(0;0))UO = 0

Therefore

x1;1;(0;0) R x1;2;(0;0) () (1 � PG(x1;2;(1;0))) � 1;2;(1;0) R PG(x1;2;(0;0))� 1;2;(0;0)

On the other hand, we have

V1;1;(0;0) =
VW + VL

2
() PG(x1;1;(0;0))(1 � PG(x1;2;(1;0))) � 1;2;(1;0) = (1 � PG(x1;1;(0;0)))PG(x1;2;(0;0))� 1;2;(0;0)

() (1 � PG(x1;2;(1;0))) � 1;2;(1;0) = (1 � PG(x1;1;(0;0))) � 1;2;(0;0)

The condition holds if � 2(1; 0) + � 2(0; 1) = 1:

H First-Mover Advantage: A Re�nement
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