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Abstract

We provide predictions for DSGE models with incomplete information that are

robust across information structures. Our approach maps an incomplete-information

model into a full-information economy with time-varying expectation wedges and pro-

vides conditions that ensure the wedges are rationalizable by some information struc-

ture. Using our approach, we quantify the potential importance of information as a

source of business cycle uctuations in an otherwise frictionless model. Our approach

uncovers a central role for �rm-speci�c demand shocks in supporting aggregate con�-

dence uctuations. Only if �rms face unobserved local demand shocks can con�dence

uctuations account for a signi�cant portion of the US business cycle.
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1 Introduction

What are the sources of aggregate uctuations? One common view is that business cycles

are caused by shocks to the con�dence of consumers and �rms. The literature on business

cycles has formalized this view in several ways, including modeling con�dence uctuations as

a consequence of incomplete information (e.g., Lorenzoni, 2009; Angeletos and La’O, 2013;

Benhabib, Wang and Wen, 2015). Yet, relatively few of these information-based models have

been investigated quantitatively. At least in part, this is because the private information

structures governing people’s beliefs are hard to observe in the data or|as argued by Sims

(2003) and Woodford (2003)|may have no observable counterpart.

In this paper, we quantify the potential importance of con�dence-driven business cy-

cles using a novel approach that bypasses the challenge of postulating ad-hoc information

structures. The approach takes the economic environment (technology, preferences, market

structure) as given, but does not require a complete speci�cation of the information structure

that governs people’s beliefs. Instead, we provide an \information-robust" characterization

of all equilibria that are possible within a given economic environment.

Methodological contribution We develop our methodology for a canonical class of mod-

els with dispersed or incomplete information, without any restriction on the set of signals

governing people’s beliefs regarding their own idiosyncratic shocks, the aggregate state of

the economy, what other agents believe, and so on. Notably, our general framework encom-

passes virtually all linear rational expectations DSGE models explored in the literature. We

show how to map these models into a \primal" economy, in which all agents have full in-

formation and where deviations from full information are summarized by exogenous wedges

in agents’ equilibrium expectations. We then develop necessary and su�cient conditions for

the existence of an information structure that is consistent with the expectation errors cap-

tured by these wedges. Subject to these conditions, the primal economy is isomorphic to the

incomplete-information economy.

Exploiting this equivalence, we derive a complete characterization of all information equi-

libria within a given economic environment. Speci�cally, our characterization allows the

researcher to specify a (possibly empty) minimal information set reecting their prior of

what constitutes a lower bound on agents’ information. Our main theorem then states that

an equilibrium of the primal economy corresponds to an equilibrium of the information econ-

omy if and only if the expectation errors captured by the exogenous wedges are orthogonal

to the corresponding agent’s actions and each element of that agent’s minimal information

set. In our applications, we show how to use this characterization to draw concrete economic
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conclusions about equilibrium in the incomplete information model, without ever completely

specifying the information available to agents.

Applied contribution To demonstrate the usefulness of our approach, we use it to ask:

Under what conditions can changes in con�dence generate sizable uctuations in aggregate

economic activity? As an illustration, we �rst examine this question in the context of a simple

price-setting model similar to the one in Woodford (2003). The model describes the problem

of price-setting �rms who face exogenous aggregate demand and downward-sloping individual

demand functions. Applied to this model, our methodology can be used to analytically bound

the variances of endogenous variables, to sign cross-covariances among them, and to limit

their autocorrelations. Among our results, we �nd that any information structure that allows

�rms to contemporaneously observe their own sales implies that aggregate ination must be

procyclical. Moreover, if either idiosyncratic or aggregate demand is observed (or constant),

then aggregate output does not uctuate.

After demonstrating our approach in this simple context, we then use it to explore the

potential for con�dence-driven business cycles quantitatively. Our quantitative model is a

exible price business cycle model without capital, in which households and �rms live on

informationally disparate \islands." The inclusion of households introduces the potential

for additional aggregate demand channels that act through incomplete information. Like

the price-setting example, �rms on each island experience uctuations in local demand. In

addition, we allow for exogenous uctuations in aggregate productivity, as well as temporary

and persistent changes in �rm-level productivity.

Whether the model generates aggregate uctuations beyond those induced by aggregate

productivity shocks depends on its ability to generate expectation errors that are correlated

in the cross-section. There are two potential sources of such correlation. First, agents can be

jointly optimistic or pessimistic regarding the aggregate state of productivity, as in Lorenzoni

(2009) or Angeletos and La’O (2010). Second, agents can be jointly optimistic or pessimistic

about their own idiosyncratic conditions, as in Angeletos and La’O (2013) or Benhabib,

Wang and Wen (2015), possibly accentuated by strategic uncertainty. Both channels are

disciplined by the properties of the fundamental shocks to productivity and demand. Our

approach allows us to provide a general characterization of these restrictions that does not

hinge on speci�c structural assumptions about people’s information.

For reference, we �rst establish a novel theoretical benchmark for the case in which the

stochastic process governing idiosyncratic shocks is unrestricted by data. For this case, we

show that con�dence-driven uctuations can in principle generate any autocovarince struc-
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ture for output and ination, bypassing all cross-equation restrictions that obtain under full

information, provided that agents do not perfectly observe demand for their local goods when

making production choices. This result extends �ndings of Angeletos and La’O (2013) and

Benhabib, Wang and Wen (2015) that correlated information shocks can generate arbitrary

macroeconomic volatility if idiosyncratic shocks are su�ciently volatile.

In light of this benchmark, we next ask: How much expectations-driven volatility can

one generate for a realistic calibration of idiosyncratic shocks? We explore this question by

calibrating the processes for idiosyncratic productivity and demand using existing micro-data

estimates (Foster, Haltiwanger and Syverson, 2008). We then compute global upper bounds

on con�dence-induced output uctuations, their persistence, and the contemporaneous cor-

relation with ination.

For an empirically plausible calibration, we �nd that the volatility-frontier for con�dence-

induced output uctuations is hump-shaped in aggregate persistence and is decreasing in

the contemporaneous correlation with ination. For an aggregate persistence and ination-

cyclicality consistent with U.S. data, the maximal one-step-ahead volatility of con�dence-

induced uctuations in output is 0.011 (approximately 90 percent of its empirical coun-

terpart). We demonstrate that the ability to generate sizable macro-volatility through

con�dence-uctuations hinges critically on the volatility of micro-shocks to �rm demand.

By contrast, micro-shocks to productivity play a somewhat dispensable role for generating

aggregate volatility.

Why does idiosyncratic product demand play such an important role in supporting ag-



ported by uncertainty about productivity in this case are not nearly as large as those that can

be generated by uncertainty regarding local demand. Across the cases we investigate, local

demand uncertainty remains the most important prerequisite for large information-driven

uctuations.

Finally, we explore the degree to which con�dence-driven uctuations are consistent with

U.S. business cycle data. To this end, we estimate a prototype wedge-economy similar to the

one in Chari, Kehoe and McGrattan (2007), which captures the auto-covariance structure

of the U.S. business cycle by construction. We then use our theoretical results to parti-

tion the estimated wedges into an informational component, which can be microfounded

through incomplete information, and a non-informational residual. We �nd that, in princi-

ple, con�dence-uctuations can account for a large portion of the U.S. business cycle that

remains unexplained after conditioning on productivity shocks.

Again, a prerequisite for such con�dence-uctuations to be sizable is that �rms do not

know their idiosyncratic product demands while making their production plans: If local

demand is perfectly observed, at most 3 percent of observed output uctuations can be

accounted for by any type of con�dence (regardless of what else �rms observe). By contrast,

if local demand is not observed but aggregate productivity is, up to 51 percent of output

uctuations can be explained by correlated con�dence regarding local conditions, leading

us to conclude that local demand shocks are crucial for the model to support aggregate

sentiment uctuations.

Related literature The methodology developed in this paper is related to Bergemann and

Morris (2013, 2016) and Bergemann, Heumann and Morris (2014). These papers demonstrate

the equivalence between Bayes equilibria in games with incomplete information and Bayes

correlated equilibria. The approach developed in this paper is similar in that it also demon-

strates the equivalence between a class of incomplete-information models with another class

of full-information models. Our approach is signi�cantly more general, however, because it

is not limited to static game environments, but also applies to dynamic market economies,





2 Information-Robust Characterization

We present our main result in the context of a general linear rational expectations model with

incomplete information. The framework encompasses virtually all linearized DSGE models

used in the literature as well as the class of coordination games studied by Morris and Shin

(2002) and others. After stating our main characterization theorem, we demonstrate its

application in a simple model of price setting. In the subsequent sections, we apply our

methodology to a quantitative business cycle model, and use it to explore the potential

importance of con�dence-driven business cycles in the United States.

2.1 Main Theorem

Framework Consider a linear economy characterized by a system of expectational dif-

ference equations, in which date-t expectations are formed conditional on a collection of

information sets fIji;tg. Here, j 2 f0; 1; : : : ; Jg indexes a collection of ex-ante heterogeneous

information classes that may di�er arbitrarily. Within each class j, there is a continuum

of ex-ante symmetric information sets, indexed by i 2 [0; 1], which may only di�er in their

ex-post realization of shocks.3 We normalize j = 0 to refer to the full information set, I�t ,

which is de�ned by the history of all variables that are realized at date t.4

Let gi;t � [�gi;t; g
a
t ], where �gi;t denotes a n�g � 1 vector of purely atomistic endogenous

variables that satisfy the adding-up constraint
R 1

0
�gi;t di = 0, and gat denotes a nga � 1

vector of endogenous aggregate variables (which may but are not limited to include the

\mean component" of f�gi;tg).
We suppose that gi;t satis�es the following system of expectational di�erence equations:

0 =
JX
j=0

E

(h
Aj

1 Aj
2

i " gi;t+1

fi;t+1

#
+
h

Bj
1 Bj

2

i " gi;t

fi;t

# ����� Iji;t
)
; (1)

for all i 2 [0; 1] and t = 0; 1; : : : . Here, fi;t � [�fi;t; f
a
t ] is an exogenous column vector of

stochastic variables. In analogy to the endogenous vector gi;t, we partition the exogenous

vector into an atomistic component, �fi;t, and an aggregate component, fat , where the atom-

3Here, ex ante symmetry across i means that the unconditional distribution over Iji;t is identical across
all i. While di�erences in the ex-post realization of signals can also be captured by introducing additional
information classes, using i to reect these di�erences helps streamlining notation in models where (some)
agents are ex-ante identical.

4Notice that which variables are realized at date t is de�nitional and, thus, something the modeler must
specify. For instance, I�

t could contain future innovations if they are realized at date t as in the news
literature.
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istic component satis�es the adding up constraint
R 1

0
�fi;t di = 0. We assume that fi;t follows

a stationary Gaussian process and is ex-ante symmetric across i.5



To do so, we impose the following structure on information in the original economy.

Assumption 1 (Information bounds). �j
i;t � I

j
i;t � I�t .

Assumption 1 de�nes a lower and an upper bound on information. The upper bound,

I�t , simply states that agents cannot learn more than what is potentially knowable under

full information. The lower bound, �j
i;t, must be speci�ed by the modeler. It constitutes

the primary input parameter to our methodology, allowing researchers to explore how their

priors regarding agents’ information restricts equilibrium outcomes.

Assumption 2 (Recursiveness). Ii;t�1 � Ii;t:

Assumption 2 imposes the usual rationality requirement that all agents perfectly recall

past information. While perfect recall is standard, we note that our methodology easily

extends to the case where agents may forget past information.6

To state the theorem, de�ne

�ji;t � Et[A
j
1gi;t+1 + Aj

2fi;t+1 + Bj
1gi;t + Bj

2fi;t] + � ji;t;

which for each (i; j; t) represents the expectation implicit in � ji;t. The following theorem states

the implementation result.

Theorem 1. Fix stationary F , T and E 2 Eprimal(F ; T ). Then there exists an informa-

tion structure I satisfying Assumptions 1 and 2 that implements E as equilibrium in the

incomplete-information economy (i.e., E 2 E(F ; I)) if and only (i) E[� ji;t] = 0 and (ii)

E[� ji;t�] = 0 for all � 2 f�ji;t�s;�
j
i;t�sgs�0 (3)

hold for i, j, and t.

The theorem gives two conditions that are jointly necessary and su�cient for T to be im-

plemented by some information structure. Condition (i) is simply a rationality requirement

that an agent’s beliefs cannot be perpetually biased. Condition (ii) is an orthogonality re-

quirement between the expectation wedges and �ji;t and �j
i;t. The necessity of this restriction

is the familiar result that expectation errors must be orthogonal to all available informa-

tion, including an agent’s belief �ji;t itself (at the very least \one knows what one knows").

The novel part of our result is the su�ciency of this condition. For any E 2 Eprimal(F ; T )

with E[Tt] = 0, we can always construct an information structure that implements E as an

incomplete-information equilibrium as long as it satis�es (3).

6Speci�cally, in this case, we obtain a version of our theorem, in which condition (3) is imposed only for
s = 0.
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the log-linearly approximated pricing decision of a monopolistically competitive �rm, while

taking aggregate demand as an exogenous process in the spirit of Woodford (2003).

Setup Firms in the model set their prices according to

pi;t = E[pt + �yt + �zi;tjIi;t]; (8)

where pt �
R 1

0
pi;t di is the aggregate price index, yt is aggregate output, zi;t is an idiosyncratic

demand shock, and � 2 (0; 1) and � 2 [0; 1] are the elasticities of the target price in yt and

zi;t. Each �rm i, faces standard CES demand,

yi;t = ��(pi;t � pt) + yt + �zi;t; (9)

with � > 1: Finally, aggregate output and prices are related via the constant-velocity equation

qt = yt + pt; (10)

with qt denoting the exogenous supply of money. We assume that fzi;tg and qt follow inde-

pendent stationary Gaussian processes, and
R 1

0
zi;t di = 0.

Primal representation Because only (8) contains an expectation, it is the only equation

with a non-trivial expectation wedge in the primal representation of the economy. The primal

representation of the economy is therefore given by

pi;t = pt + �yt + �zi;t + �i;t (11)

along with equations (9) and (10).

Given a process f�i;tg, the equilibrium of the primal economy is straightforward to �nd.

De�ning �t �
R 1

0
�i;t di, aggregates in the economy are given by

pt = qt + ��1�t; yt = ���1�t: (12)





an exogenous aggregate shock to generate any expectation-driven uctuations in aggregate

output. As we explore in our more general quantitative setting, this conclusion is an artifact of

two simplifying assumptions: (i) the assumption that �rms observe their own sales, yi;t 2 �i;t,

which precludes �rms from having uncertainty about their demand, and (ii) the absence of

other �rm-speci�c shocks a�ecting input prices or technology. Once we relax either of these

assumptions, it will be possible to generate expectation-driven uctuations in the absence

of aggregate shocks. Before further exploring this possibility, we �rst demonstrate how one

can use our methodology to establish related bounds on the co-movement between output,

ination and money growth.

Proposition 2. Ination �t � pt � pt�1 and money growth dqt = qt � qt�1 must be weakly

procyclical. Speci�cally, the correlation with output is bounded below as follows:

�
p

Var[yt] � (1� �)� � Corr[yt; �t]

1� Corr[yt; yt�1]

p
Var[�t]

and p
Var[yt] �

(1� �)�

(1� �)� + �
� Corr[yt; dqt]

1� Corr[yt; yt�1]

p
Var[dqt]:

Proof. As both bounds are derived following completely analogous steps, we only show the

proof for ination. Evaluating (16) for s = 0 and s = 1, using (12) to substitute for �t, and

di�erencing the resulting conditions, we have

�Cov[yt; dyt]� �(1� �)Cov[yt; �] = ����1Cov[��i;t; d��i;t]:

Noting that Cov[��i;t; d��i;t] = (1� Corr[��i;t;��i;t�1]) �Var[��i;t] � 0 completes the proof.

The proposition establishes that, when uncertainty originates exclusively from demand

shocks, expectations-driven uctuations must exhibit exactly the same cyclical properties as

demand shocks themselves. Again, the restriction is especially stark given the assumptions

of our simple model, and the restriction that ination and money growth must be procyclical

is relaxed once we allow for other sources of uncertainty.

We conclude our illustration by exploring two re�nements of �i;t.

Proposition 3. Suppose fzi;t; yi;tg 2 �i;t. Then aggregate output is constant.

Proof. Using (9) to substitute out �yi;t in (15), and combining with (14) to eliminate �pi;t,

we obtain

Cov[�t; yt�s + �pt�s] = ��Cov[��i;t; zi;t�s]: (18)
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From
R
zi;t di = 0, it follows that Cov[��i;t; zi;t�s] = Cov[�i;t; zi;t�s]. Applying Theorem 1, it



a representative �rm in a local labor market. Firms use the labor provided by households

to produce di�erentiated intermediate goods, which are aggregated by a competitive �nal

goods sector located on the mainland. There are no subperiods; all markets at date t operate

simultaneously.

Households Preferences on island i are given by

E

(
1X
�=0

��U(Ci;t+� ; Ni;t+� ) j Ii;t

)
;

where � 2 (0; 1) is the discount factor, Ni;t is hours worked, Ci;t is �nal good consumption,

and Ihi;t denotes the information available to the household on island i at time t. The utility

ow U is given by

U(C;N) = logC � 1

1 + �
N1+� ;

where � � 0 is the inverse of the Frisch elasticity of labor supply. The household’s budget

constraint is

PtCi;t +QtBi;t � Wi;tNi;t +Bi;t�1 +Di;t;

where Pt



speci�c component,

logAi;t = logAt + �ai;t;

where the aggregate component follows a random walk process

logAt = logAt�1 + �t:

The innovation �t is i.i.d. across time with zero mean and constant variance. The island-

speci�c component �ai;t follows a time-invariant, stationary random process that is i.i.d. across

islands and is normalized so that
R 1

0
�ai;t di = 0.

Final-good sector A competitive �nal-goods sector aggregates intermediate input goods

i 2 [0; 1], using the technology

Yt =

�Z 1

0

Zi;tY
��1
�

i;t di

� �
��1

;

where � > 1 is the elasticity of substitution among input varieties, Yi;t denotes the input

of intermediate good i at time t, and Zi;t is an island-speci�c demand shifter following a

time-invariant, stationary process that is i.i.d. across islands and satis�es
R 1

0
log(Zi;t) di = 0.

Pro�t maximization yields the inverse input demands, given by

Pi;t =

�
Yi;t
Yt

��1=�

Zi;tPt; (20)

where the aggregate price index Pt is de�ned by

Pt =

�Z 1

0

Z�
i;tP

1��
i;t di

� 1
1��

:

Monetary policy We close the model by specifying a simple interest rate rule, pinning

down the equilibrium rate of ination, �t � log(Pt=Pt�1). Speci�cally, we assume that the

central bank sets nominal bond prices such that

it = ��t; (21)

(
R 1

0
Y

1�1=�
ij;t dj)�=(��1) where � matches the elasticity of substitution across \island-varieties" speci�ed in the



where � > 1 and it = � log(Qt).
9

Information structure Our methodology allows us to explore how a few abstract as-

sumptions regarding fIji;tgi;j2



3.2 Equilibrium Conditions

We work with a log-linear approximation to the model around the balanced growth path

of the economy with no heterogeneity and full information. Lower-case letters denote log-

deviations of a variable from this path, in which yi;t = at for all i and �t = 0.

The households’ Euler equation is given by

ci;t = E[ci;t+1 � ��t + �t+1 j Ihi;t]: (25)

Combining �rms’ demand for labor with households’ supply, local labor market clearing

requires

yi;t = �
�
yi;t � ci;t + E[pi;tjIfi;t]� E[ptjIhi;t]

�
+ ai;t; (26)

where � � 1=(� + 1). The linearized price index pt is given by pt =
R 1

0
pi;t di. The linearized

demand relation and budget constraint take the form

pi;t = ��1(yt � yi;t) + zi;t + pt (27)

and

�bi;t = bi;t�1 + yi;t � ci;t + pi;t � pt; (28)

where bi;t � Bi;t=(PtCi;t) is in levels rather than logs because Bi;t can take negative values.

Given a process for fundamentals and information fai;t; zi;t; Ifi;t; Ihi;tg, an equilibrium of the

model is a set of processes fci;t; yi;t; bi;t; pi;tg and fyt; �tg that are consistent with (25){(28),

with Bayesian updating, and with market clearing for goods,

yt =

Z 1

0

yi;t di =

Z 1

0

ci;t di: (29)

(As usual, market clearing for bonds is implied by (28) and (29).)

Comment on prices, information, and market clearing In many general equilibrium

models with incomplete information it is relatively simple for agents to infer the value of the

economy’s aggregate fundamentals from observing aggregate prices. As argued by Lorenzoni

(2009), this is largely an artifact of the simplicity of models, whereas, in practice, the ability

of agents to learn about the economy’s fundamentals is likely impaired by a large number of

shocks, model misspeci�cation, and the possible presence of structural breaks. To capture

these e�ects within simple models like ours, the literature has therefore utilized various ways
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of introducing noise into price systems.11

In keeping with the literature, we do not include the real return on assets, rt � it�Et[�t+1],

or its constituents it, pt and Et[pt+1], in the lower bound on households’ information fIhi;tg.
However, we note that by imposing market clearing on the aggregate goods market, we

implicitly require that households observe some noisy version of rt such that the average

expected real interest �Et[rt] increases with rt. Using our methodology, there is no need to

explicitly specify the signals through which households make inference about rt. Instead,

requiring market clearing in the primal representation of the economy yields by construction

a \market clearing expectation" �Et[rt] that adapts to clear the goods market in all states of

the world.12

To see this, consider the simpli�ed case where aggregate demand is given by ct = �E[rtjIt]
and aggregate supply, yt, follows an exogenous random process. In this case, market clearing

(ct = yt) requires

E[rtjIt] = �yt; (30)

which in conjunction with It pins down rt: In the primal representation, E[rtjIt] = rt + �t,

and market clearing requires

rt + �t = �yt: (31)

The key di�erence between (30) and (31) is that the expectation error, �t, is a primitive of

the primal economy. Because �t is exogenous in the primal economy, the solution rt = �yt��t
always imposes that the implied E[rtjIt] responds one-for-one to a decline in yt, inducing

precisely the sensitivity of households’ expectations to economic conditions that is necessary

for rt to clear the goods market. Hence, by imposing market clearing in the primal economy,





and, using d(�) to denote the �rst di�erence of a variable, �x

Et � fdci;t; dyi;t; dbi;t; dpi;tgi2[0;1] [ fdyt; �tg 2 E(F ; T ):

Then there exists an information structure I satisfying Assumptions 1{3 that implements E
as equilibrium in the incomplete-information economy if and only if (i) (� ci;t; �

p;h
i;t ; �

p;f
i;t ) follows

a MA(h) process of order h < �h, (ii) E[(� ci;t; �
p;h
i;t ; �

p;f
i;t )] = 0, and (iii)

E[� ci;t�] = E[� p;hi;t �] = 0 for all � 2 fShi;t�sg
�h�1
s=0 ; and

E[� p;fi;t �] = 0 for all � 2 fSfi;t�sg
�h�1
s=0

hold for all i and t.

Proposition 5 is an immediate corollary to Theorem 1. Here, the restriction to �nite

MA processes arises because



captured by � pt � � p;ft � �
p;h
t , which corresponds to the labor wedge in our economy that is

composed of a household and a �rm component. The aggregate \wedges" � ct and � pt are the

sole drivers of the output gap and ination. If all agents had full information (� ct = � pt = 0),

the aggregate economy would be in its �rst-best equilibrium in which output reaches its

potential in every period (yt = at) and ination is always zero.

In general, a solution for endogenous variables as a function of the joint process �t �
(� ct ; �

p
t )0 can be obtained using standard numerical tools. In our case, a closed-form solution

is also available. Substituting for ŷt in (34), �t is characterized by the prediction formula

�t = ��1Et[�d�
p
t+1 � d� ct+1 + �t+1]: (36)

Following Hansen and Sargent (1980, 1981), we obtain an explicit solution for ination, stated

in the following.

Lemma 1. Let �t = A(L)ut, where A(L) is a square-summable lag polynomial in non-negative

powers of L and the innovations ut are orthogonal white noise. Then there exists a unique

stationary equilibrium process for (ŷt; �t), given by

ŷt =
h
0 �

i
A(L)ut (37)

and

�t =
h
�1 �

i (1� L)A(L)� (1� ��1)A(��1)

�L� 1
ut: (38)

4 Inference About the Aggregate Economy

In this section, we explore how the theoretical restrictions of Proposition 5 translate into

restrictions on the behavior of the aggregate economy. In a �rst step, Section 4.1 maps the

restrictions stated in Proposition 5 into restrictions on the dynamics of the \macro" wedges

determining the behavior of the aggregate economy. Sections 4.2 and 4.3 then use these

restrictions on the macro wedges to characterize feasible volatility and co-movement patterns

of output and ination under varying assumptions on information and fundamentals.

4.1 Feasible Dynamics of Aggregate Wedges

We begin by mapping the orthogonality restrictions in Proposition 5 into restrictions on

the macro wedges � ct and � pt . To streamline the exposition, we only detail the derivation

21



for the baseline case �sym
i;t depicted in (22), in which �rms and households have symmetric

information.

To begin, observe that for �sym
i;t , f�i;t�s;�sym

i;t�sgs�0 satis�es Assumption 3 with

Si;t = fdci;t; dyi;t; dai;tg:

Here we have used that (i) ni;t and wi;t are linear combinations of (ci;t; yi;t; ai;t) and are

therefore informationally redundant; and (ii) that for any �nite horizon �h, observing the

sequence of di�erences fSi;t�sg
�h�1
s=0 in addition to I�

t��h
contains the same information as the

corresponding sequence of levels.

To proceed, de�ne �i;t � (� ci;t; �
p;h
i;t ; �

p;h
i;t )0 and let ��i;t � �i;t � �t denote the idiosyncratic



and the (auto-)covariance structure of the economy, which can be characterized numerically.

For our numerical analysis below, we exploit that for any (zero mean) MA(�h) process

for the idiosyncratic and aggregate components of �i;t, condition (39) is both necessary and

su�cient for the implementation of these wedges by some information structure. The set

of feasible aggregate uctuations is thus characterized by the set of aggregate processes

f� ct ; �
p
t g for which (39) can be satis�ed with some processes for the idiosyncratic components

f�� ci;t;��
p
i;tg. In general, one can obtain this characterization by numerically solving for the

map from wedges to covariances, which entails �nding equilibrium in the \Delta"-economy.

In our case, we are able to simplify the search by solving the \Delta-economy" in closed

form, which allows for a more e�cient numerical implementation (see the derivation following

Lemma 2 in the Online Appendix for details.)

4.2 Unrestricted Micro-Shock Benchmark

Before proceeding to our quantitative results, we provide a theoretical benchmark for the

case where we treat the idiosyncratic fundamentals, �fi;t = (�ai;t; zi;t), as unrestricted.

Previous literature has shown that if idiosyncratic fundamentals are su�ciently volatile, then

confusion about these shocks can be used to support aggregate uctuations in ŷt, even if there

are no aggregate shocks to fundamentals. This is because expectation errors regarding local

shocks can be correlated across islands even though the underlying fundamentals are purely

idiosyncratic (e.g., Angeletos and La’O, 2013; Benhabib, Wang and Wen, 2015).

In the spirit of this literature, the following benchmark uses our methodology to charac-

terize what dynamics are possible if we place no restrictions on �fi;t. By construction, the

chosen process for �fi;t has no direct impact on the aggregate economy. Its only role is to

provide a source of uncertainty, which can be used to support aggregate uctuations when

information is incomplete.

Proposition 6. Fix a (zero mean) MA(�h) process � for (� ct ; �
p
t ) and set �sym

i;t as in (22).

Then for any aggregate productivity process, a, there exist idiosyncratic processes �� and

�f , such that � can be implemented in the incomplete information economy.

Proposition 6 provides a striking benchmark: Absent micro-data that disciplines �fi;t,

correlated optimism and pessimism (across islands), can be used to generate any joint process

in (ŷt; �t). Going beyond the results in Angeletos and La’O (2013) and Benhabib, Wang and

Wen (2015) on volatility, the benchmark shows that \sentiment" uctuations can implement

arbitrary processes for �t and, by implication, arbitrary autocorrelation structures among the

aggregate variables, potentially bypassing all cross-equation restrictions that emerge under
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full information.14 Intuitively, expectation errors can plausibly be correlated, both because

information can be correlated between households and �rms and because expectation errors

by households generally a�ect both their consumption and labor supply.

4.3 Quantitative Results

In light of the \everything goes" result in Proposition 6, a natural question to ask is: what

are the restrictions on aggregate dynamics once we �x �fi;t at an empirically plausible

calibration? We explore this question numerically, calibrating �fi;t to existing micro-data.

Parametrization We interpret one period as a quarter, and set the discount factor � to

0:99. The inverse Frisch elasticity � is set to 0.5, the elasticity of substitution between input

varieties � is set to 7.5, and the elasticity of the interest rate � is set to 1.5. These values are

within the range typically used by the literature.

Next, we set the incomplete information horizon to �h�



zi;t and �ai;t that match the corresponding statistics in Foster, Haltiwanger and Syverson

(2008).15

It is worth noting that, in line with popular views, the data of Foster, Haltiwanger and

Syverson (2008) imply that demand shocks are much larger than productivity shocks (see

also Loecker 2011; Demidova, Kee and Krishna 2012; Roberts et al. 2017; Foster, Haltiwanger

and Syverson 2016 for similar results). Intuitively, this is consistent with the idea that

uctuations in demand reect both demand and supply shocks upstream in the production

chain, which ampli�es demand uncertainty relative to the uncertainty about within-�rm

technology. We explore the robustness of our results with respect to the scale of idiosyncratic

shocks, considering a variety of calibrations in the exercises that follow.

Volatility frontier (de�nition) We compute the maximal output volatility|as a function

of its persistence and the cyclicality of ination|that our model can generate in the absence

of aggregate shocks to fundamentals (Var[�t] = 0).

Formally, de�ne �ŷ(�) �
p

Var[ŷtjI�t�1] as the one-step-ahead volatility of output induced

by � . Similarly, de�ne �ŷ(�) � Corr[ŷt; ŷt�1] as the �rst-order autocorrelation of ŷt, and de�ne

ŷ�(�) � Corr[ŷt; �t] as the contemporaneous correlation with ination. We use Lemma 2 to

numerically trace out the volatility frontier for output as a function of its autocorrelation �ŷ

and its contemporaneous correlation with ination ŷ�:

�max
ŷ (��ŷ; �ŷ�) �max

�;��
f�ŷ(�)g

subject to

�ŷ(�) = ��ŷ

ŷ�(�) = �ŷ�

and the implementability condition (39). Here � and �� are independent (zero-mean) MA(�h)

processes. �





0:01 0:1 1
0:1



�gure.

The sensitivity is strongest in �z and �z, indicating that correlated expectation errors

about the demand shocks fzi;tg are of critical importance for supporting uctuations in

aggregate con�dence. In particular, a reduction in �z from its baseline value of 0.2504 to

0.01, reduces �max
ŷ by a factor of three to 0.37 percent; an increase in �z to 1.00, increases

�max
ŷ to 3.39 percent. Those comparative statics reect the naturally increasing shape of

�max
ŷ in any fundamental volatility. Intuitively, the more volatile zi;t (and ai;t), the larger the

potential for agents to make expectation errors, which is a direct consequence of the law of

total variance (Var[Efzi;tjIi;tg] � Var[zi;t]). In the extreme case where �z ! 0, rationality

requires that E[zi;tjIi;t] = 0 for all t, even if Ii;t contains no information about zi;t.

Similarly to �z, variations in the persistence of zi;t also have a signi�cant impact on

�max
ŷ : a reduction of �z from its baseline value of 0.976 to 0.5, reduces �max

ŷ to 0.35 percent.

An increase in the persistence of zi;t to 0.99, increases �max
ŷ to 3.18. The role of �z for

supporting expectation errors is two-fold. First, Var[zi;t] is increasing in �z, again increasing

the potential for expectation errors. Second, persistence in zi;t (or in �ai;t), enables optimism

and pessimism regarding the wealth of the local household, independently from the direct

e�ects on contemporaneous labor supply and demand. As uctuations in perceived wealth

translate into uctuations in desired consumption, they can be used to induce pro-cyclical

ination dynamics as in Lorenzoni (2009), which is instrumental for generating the targeted

cyclicality of ination (ŷ� = 0:3).19

By contrast, variations in the parameters of fai;tg result in only moderate variations in

�max
ŷ . In particular, reducing �x or �! to 0.01, implies only marginally smaller values of �max

ŷ ,

suggesting that the idiosyncratic productivity shocks f�ai;tg play a somewhat dispensable

role in our calibration. This reects two factors. First, given our calibration, productivity is

less volatile than demand, implying that there is less scope for productivity-related confusion

in the �rst place. Second, because ai;t 2 �i;t, �rms and households always know their current

productivity, limiting productivity-related confusion to uncertainty about the composition of

�ai;t, whose relevance in turn is determined by the persistence of xi;t.

No demand uncertainty So far, we have not taken a stand whether or not agents know

the inverse demand for the local good, pi;t. As an alternative, we now consider the case where

pi;t is perfectly observed, so that there is no uncertainty about the revenues associated with

19In order to generate pro-cyclical ination dynamics through optimism and pessimism about zi;t, the
information structure must mute the direct substitution e�ect on labor demand. This can be achieved, for
instance, by making agents (su�ciently) informed about pi;t (coupled with some nominal misconception as
in Lucas (1972, 1973), so that pi;t does not fully reveal zi;t), which is a su�cient statistic about E[zi;tjIi;t]
for determining labor demand.
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a particular choice of production. Formally, information is now bounded by

�i;t = fpi;t�sgs�0 [�sym
i;t

with �sym
i;t given by (22). Because � p;fi;t measures �rms’ expectation error regarding pi;t, an

immediate consequence of including pi;t in �f
i;t is that � p;fi;t = 0 for all i and t, so that

uctuations in aggregate output can only be driven by the households’ component of the labor

wedge. Intuitively, �rms only need to know their marginal costs, wi;t � ai;t, and their local

demand, pi;t, to behave as if they have full information (see also Hellwig and Venkateswaran,

2014).

For the baseline parametrization of f�ai;t; zi;tg, shutting down � p;ft reduces �max
ŷ to 0.41,

suggesting that uncertainty about demand is key to generating sizable aggregate uctuations.

Moreover, compared to the case where �sym
i;t is given by (22), the sensitivity of �max

ŷ in the

parameters of fzi;tg is reduced, whereas the sensitivity in the parameters of fai;tg is heightened

(illustrated by the gray squares in Figure 2). This is because when pi;t is known, agents can

back out the state of zi;t + pt � ��1yt from (20), reducing the scope to generate waves of

optimism and pessimism via zi;t and, by implication, increasing the model’s reliance on �ai;t

for supporting aggregate uctuations in con�dence.20

Heterogeneous information We next relax the assumption that households and �rms

share the same information set, setting �h
i;t and �f

i;t as in (23) and (24). The resulting

volatility frontier is depicted by the red lines in Figure 2. For the baseline calibration, this

increases �max
ŷ to 4.49 percent. This reects the additional exibility in Ifi;t and Ihi;t, due to

households not being required to perfectly know the local �rm’s productivity (i.e., ai;t; yi;t =2
�h
i;t) and �rms not being required to perfectly know households’ consumption (ci;t =2 �f

i;t).

Speci�cally, this enables waves of optimism and pessimism among households about income-

uctuations caused by �ai;t and zi;t, translating to aggregate demand uctuations|even

if �ai;t and zi;t are observed by �rms. The stark increase in �max
ŷ suggests that the usual

assumption of symmetric information may in fact be quite restrictive.

Finally, we explore a variant of the heterogeneous information setting where �rms face no

demand uncertainty (�f
i;t includes fpi;t�sgs�0 in addition to (24)). The results are depicted

by the blue lines in Figure 2). Compared to the symmetric-information case without demand

uncertainty, �max
ŷ is slightly increased to 0.49. However, the di�erence between symmetric

20The sensitivity in zi;t is not reduced to zero for two reasons. First, zi;t serves as noise about the aggregate
state. Second, despite there being no uncertainty about current pi;t, expectation errors about zi;t continue
to translate into optimism and pessimism about future prices whenever �z 6= 0, which a�ects local wealth
and households’ consumption choice.
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Table 1: Summary of estimated U.S. wedges

Contemporaneous correlation

Standard

deviation

First-order

autocorr.

with �̂ ct with �̂pt



5.1.2 Partitioning of the estimated wedges

We partition the estimated wedge process �̂t into an informational component � info
t and a

residual component � resid
t ,

�̂t = � info
t + � resid

t : (42)

In parallel to �̂t, we model both components as statistically independent MA(14) processes,

� info
t = �info

� (L)�info
t + �info

u (L)uinfo
t

� resid
t = �resid

� (L)�resid
t + �resid

u (L)uresid
t ;

where �info
� , �info

u , �resid
� and �resid

u are square-summable lag polynomials in non-negative

powers of L. The innovations, �info
t , �resid

t , uinfo
t and uresid

t , are mutually orthogonal white

noise. In particular, �info
t and �resid

t are innovations to aggregate productivity, satisfying

�̂t = �info
t + �resid

t ; (43)

with standard deviations �info
� and �resid

� . The corresponding lag-polynomial �info
� captures

how incomplete information regarding at inuences the propagation of productivity shocks.23

The innovations uinfo
t and uresid

t , each two-dimensional, are intrinsic shocks to � info
t and � resid

t .

Accordingly, the lag-polynomial �info
u de�nes intrinsic uctuations in � info

t , driven by expec-

tation errors, whereas �resid
u de�nes intrinsic uctuations in the residual wedges � resid

t .

The de�ning di�erence between � info
t and � resid

t is that we impose the conditions of The-

orem 1 on � info
t , whereas � resid

t remains unrestricted. We gauge the potential role of in-

complete information for explaining the U.S. business cycle by maximizing the contribu-

tion of expectation errors uinfo
t to the �ltered variance of ŷt. Let ŷtfp

t � E[ŷtj(�info
t�s; �

resid
t�s )s�0],

ŷinfo
t � E[ŷtj(uinfo

t�s)s�0], and ŷresid
t � E[ŷtj(uresid

t�s )s�0] denote the projection of the output gap on

aggregate productivity, expectation errors, and residual shocks, respectively. Independence

of the innovations implies Var[ŷt] = Var[ŷtfp
t ] + Var[ŷinfo

t ] + Var[ŷresid
t ]. Then the maximal

contribution of uinfo
t is given by:

max
� info;� resid;�info

� ;�resid
�

�
Var[ŷinfo

t ]=Var[ŷt]
	

(44)

23Conversely, �resid
� captures the e�ects of other potential frictions in propagating productivity shocks.

Splitting aggregate productivity into two independent innovations ensures that the volatility generated by
incomplete information is independent of the residual wedges � resid

t . If we instead let � info
t and � resid

t load
jointly on the combined productivity shock �t, we �nd that one can increase the variance contribution of uinfo

t

almost arbitrarily through incomplete information regarding at and its propagation through � resid
t . Below

we also consider the case where agents perfectly observe aggregate productivity, in which case both settings
give identical results.
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standard deviations, (�x; �!; �z), by up to �1 order of magnitude relative to the baseline

calibration.24 With the exception of the symmetric information benchmark, all speci�cations

allow households and �rms to have access to potentially heterogeneous information.

5.2.1 Benchmarks

As benchmark, we �rst consider the symmetric information case where �sym
i;t is set as in (22)

and the heterogenous information case where �h
i;t and �f

i;t are set as in (23) and (24). In both

cases, few restrictions are imposed on information beyond rational expectations. Perhaps

not surprisingly in light of our theoretical benchmark in Proposition 6, con�dence shocks can

fully account for all U.S. business cycle uctuations unexplained by the productivity shock

(Var[ŷinfo
t ]=Var[ŷtjfat�sgs�0] � 1), provided that (�x; �!; �z) are at least as volatile as in our

baseline calibration (scale � 1).25 For the asymmetric information case (red line), the result

is also robust to a downward-scaling of the micro-shocks by up to a factor of three. For

the symmetric information case (blue dotted line), a reduction in the micro-volatilities by a

factor of two (three), reduces the maximal contribution to 90 percent (67 percent).

5.2.2 Sentiments versus noisy learning about aggregate shocks

The benchmarks show that, in combination with productivity shocks, rational uctuations

in con�dence have the potential to fully account for the U.S. business cycle. We now take a

closer look at which type of con�dence uctuations are necessary to achieve this. Speci�cally,

we di�erentiate between two types of con�dence: (i) correlated con�dence about idiosyncratic

business conditions (aka \sentiment shocks"), and (ii) correlated con�dence about aggregate

productivity as in Angeletos and La’O (2010) or about future average productivity as in

Lorenzoni (2009).

First, consider the case of sentiment shocks. We isolate their potential contribution by

imposing perfect knowledge about the history of aggregate productivity by setting �f
i;t and

�h
i;t as in (23) and (24), augmented by fat�sgs�0, eliminating any scope for TFP-driven

uctuations in con�dence. Comparing the resulting contribution (dashed green line) with

the benchmark reveals that for small scales of the micro shocks, con�dence about aggregate

productivity is indeed key for explaining the data. On the other hand, when there is su�cient

idiosyncratic volatility (scale � 3), sentiment shocks alone can do as well as the benchmark.

24The scaling is applied to all three micro-shocks proportionately to their respective baseline values; i.e.,
the scaled standard deviations tw5sr8(e)-36n3(b)27(y)8334(a)]Tx



For the baseline calibration (scale = 1), sentiment shocks can account for 57 percent of

non-productivity uctuations in U.S. output.

Next, consider the case without sentiment shocks. To eliminate them, we set �f
i;t and

�h
i;t as in (23) and (24), augmented by fxi;t�s; zi;t�sgs�0. Here we do not include the iid-

productivities, !i;t, in �f
i;t or �h

i;t as this would allow �rms to fully back out at from observing

ai;t. However, because !i;t is serially uncorrelated and �rms know ai;t, expectation errors

about !i;t have no direct e�ect on their actions, so that all uctuations in con�dence indeed

reect imperfect information about the aggregate productivity state. The quantitative results

are shown by the gray squared lines in Figure 3. Under the baseline calibration of the micro-

shocks (scale = 1)26, TFP-driven uctuations in con�dence can explain at most 3.4 percent

of the empirical output volatility, indicating that sentiment-driven uctuations in con�dence

are indispensable for explaining the U.S. business cycle with information frictions. This is

because aggregate productivity shocks have only a limited importance by themselves, which

in turn limits the potential for optimism regarding them to drive the business cycle.27

Interestingly, however, the two cases without sentiment- and productivity-driven con�-



Table 2: Implied variance contribution to U.S. output

Contribution to

Var[ytjfat�sgs�0] Var[yt] Var[ŷt]

Heterogeneous info benchmark 1.00 0.89 0.64

Symmetric info benchmark 0.99 0.89 0.63

No TFP-driven con�dence 0.57 0.51 0.36

No sentiment-driven con�dence 0.03 0.03 0.02

No demand uncertainty 0.04 0.03 0.02

Notes.|The table shows the share of output that can be accounted by the intrinsic shocks to the infor-
mational component of the estimated wedges, uinfo

t . The contribution of the productivity shock to Var[yt]
and Var[ŷt] is 11 and 36 percent, respectively. All variance contributions are computed at business cycle
frequencies for the baseline calibration of f�ai;tg and fzi;tg (i.e., scale = 1 in Figure 3).

5.2.4 Implied variance contribution to U.S. output

The results in Figure 3 show the business-cycle contributions to output volatility that is

unexplained by productivity, Var[~ytjfat�sgs�0] (equivalently Var[ytjfat�sgs�0]). Table 2 com-

putes the implied contribution to the overall volatility in yt and ŷt. The discrepancy between

the three columns reects the contribution of the productivity shock to yt and ~yt. Looking at

the contribution to yt, sentiment-driven uctuations in con�dence can account for 51 percent

of the empirical volatility. Importantly, however, for a theory of incomplete information to

generate signi�cant uctuations in con�dence, �rms must face some uncertainty about their

idiosyncratic product demands. If this is not the case, then con�dence uctuations can at

most explain 3 percent of the empirical volatility in yt.

6 Taking Stock

We have developed a method to quantify the potential of DSGE models with imperfect

information without taking a fully structural stand on the private information of agents.

Along the way, we established a conditional equivalence, which holds under the conditions

of Theorem 1, between models with dispersed information and a prototype wedge-economy

similar to the one in Chari, Kehoe and McGrattan (2007). The informational foundation

for these wedges is distinguished from existing theories in its ability to generate arbitrary

correlation patterns between these wedges (Proposition 6). Correlated wedges, in turn, are

critical for the empirical viability of con�dence uctuations because the data imply a strong

correlation between the aggregate labor wedge and the Euler wedge.

Expectations are a natural candidate for generating the observed correlation, both because
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information can be correlated between households and �rms and because expectation errors

by households generally a�ect both their consumption and labor supply. Our results indicate,

however, that two features are crucial to achieve a quantitively important role for such

a foundation: (i) micro-shocks must be su�ciently volatile and (ii) idiosyncratic demand

must be uncertain at the time of production choices. Regarding (i), our analysis suggests

that observed micro-level volatility is indeed large enough to support substantial aggregate

volatility. Regarding (ii), the presence of idiosyncratic demand uncertainties has long been

acknowledged in business practices (Fisher et al., 1994) and in operations research (Fisher

and Raman, 1996; Mula et al., 2006









A Proof of Main Theorem

Consider any expectation wedge � ji;t 2 Tt from the primal economy and the corresponding

lower bound �j
i;t on Iji;t in the incomplete information economy. De�ne the expectation

\targets"

aji;t � Aj
1gi;t+1 + Aj

2fi;t+1 + Bj
1gi;t + Bj

2fi;t;

as pinned down by the equilibrium E 2 Eprimal(F ; T ) of the primal economy.

We want to show that conditions (i) and (ii) are jointly necessary and su�cient for the

construction of some Iji;t � S
j
i;t � f�

j
i;t�s;�

j
i;t�sgs�0 such that

E[aji;tjI
j
i;t] = E[aji;tjI�t ] + � ji;t: (45)

When this is true, any solution to (2) is trivially also a solution to (1).

To conserve notation, we suppress (i; j) subscripts going forward.

Necessity Necessity is immediate, since optimal inference requires that expectation errors

are orthogonal to variables in the information set and are unpredictable. To see this, rearrange

(45) to get

�t = E[atjIt]� E[atjI�t ]: (46)

Computing the unconditional expectation over (46) yields E[�t] = 0. Similarly, postmultiply-

ing (46) by �t and �t 2 �t gives

E[�t�t] = E[at�tjIt]� E[at�tjI�t ]

E[�t�t] = E[at�tjIt]� E[at�tjI�t ]

as �t � It � I�t . Again taking the unconditional expectation over the right-hand sides, we

have E[�t�t] = E[�t�t] = 0 for all �t 2 �t.

Su�ciency We demonstrate su�ciency by construction. Let ât � E[atjI�t ] and consider

the information set It = St [ fst��g��0, where st � ât + �t = �t is a signal that replicates

the correlation structure of the expectation we wish to implement. Notice that It inherits

recursiveness from St, ensuring consistency with Assumption 2.

From the law of iterated expectations, we have E[atjst] = E[âtjst] as st � I�t . Projecting
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ât onto st we obtain

E[atjst] = Cov[ât; st]Var[st]
�1st

= Cov[st � �t; st]Var[st]
�1st

= Var[st]Var[st]
�1st

= st; (47)

where the second line follows from the de�nition of st and the third line follows from condition

(ii) of the Theorem and the fact that st = �t 2 St. Noting that by construction no other

�t 2 St can improve the forecast about at,
29 we obtain

E[atjst] = E[atjIt] = E[atjI�t ] + �t:

As the argument above applies to any � ji;t 2 T , we have constructed exactly the informa-

tion sets needed to satisfy (45) for all (i; j; t):

29To see this, note that the forecast error conditional on st is necessarily uncorrelated with any other
�t 2 St: Cov[at � Efatjstg; �t] = Cov[at � st; �t] = Cov[at � ât � �t; �] = Cov[��t; �t] = 0. Here the �rst
equality follows from (47); the second one follows per the de�nition of �t; the third one follows, because
at � ât de�nes the forecast error under full information I�

t , so that any �t 2 St � I�
t must be orthogonal to

it; and the last equality follows from the conditions of the theorem.
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Equipped with Lemma 2, our proof proceeds in two steps. First, we derive the mappings

(�; �) 7! �s and (��;�f) 7! �s in closed form. Second, with this explicit characterization

at hand, we complete the proof by constructing processes for �� and �f that for any given

(�; �) satisfy the conditions of Lemma 2.

Characterization of �s The mapping �s is immediate from (37),

�s



Using (54) to eliminate �dyi;t+1 in (51), we have

(� � 1)�dbi;t +
�
(L�1 � 1)�(L)

�
+
�i;t =

h
�� � ���1 �

i �
(L�1 � 1)B(L)

�
+
�i;t (56)

where [�]+ sends the negative powers of L to zero. Further using (56) to eliminate dbi;t in

(55) and applying the z-transform, we obtain the following functional equation

(1� ��1z)�(z) =h
�� � ���1 �

i
[(1� z)B(z)�B0] + �0 + (1� ��1)

h
0 � 1 0

i
B(z)z: (57)

Evaluating (57) at z = � 2 (�1; 1), pins down �0 and �(z), from which we obtain the

following equilibrium process for d�yi;t � dy(L)�i;t and d�ci;t � dc(L)�i;t:

dy(z) =
h
�� � ���1 �

i
(1� z)B(z) +

h
� � � � 1� ���1 ��

i
(1� �)B(�) (58)

and

dci;t =
h
1 0 0 0

i
(1� z)B(z) +

h
�1 1� ��1� ��1 � ��1 1

i
(1� �)B(�): (59)

Collecting equations, we obtain

�s(��; f) = Cov

264��i;t;

264 1 0 0 0

�� � ���1 �

0 0 1 0

375 (1� L)B(L)�i;t�s
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To begin, substitute (60) to (49), post-multiply both sides by

M �

2641 1 0

0 ��1 0

0 ���1 1

375 ;
and apply the z-transform, to obtain the equivalent functional equation

~�(z) =

"
1 0 0 0

0 1 0 0

#8>><>>:
�
B(z)(1� z�1)B(z�1)0

�
+

2641 0 0 0

0 1 0 1

0 0 1 0

375
0

+

+ B(z)(1� �)B(�)0

264�1 1� ��1� ��1 � ��1 1

0 0 0 0

0 0 0 0

375
09>>=>>; (61)

where ~�(z) � Zf��sMgs�0 is the (one-sided) z-transform of f��sMg, and whereB parametrizes

the joint process (��i;t;�fi;t) as in the characterization of � above. In particular, let

B(L) =

264B� (L)

Ba(L)

Bz(L)

375
where B� (z) is a lag-polynomial of size 2 � n, Ba(z) and Bz(z) are each lag-polynomials of

size 1� n, and n is an arbitrary number of innovations. Then (61) can be further rewritten

as
~�1(z) + 
(z) =

�
(1� z�1)B� (z)B� (z

�1)0
	

+
+ 	(z) +B� (z)B� (�)0� (62)

and
~�2(z) =

�
(1� z�1)B� (z)Ba(z

�1)0
	

+
; (63)

where ~�1 and ~�2 correspond to the �rst two and third column of ~�, respectively, and where

	(z) �
n
B� (z)

h
(1� �)Bz(�)0 (1� z��



and

� �

"
�(1� �) 0

(1� �)(1� ��1�) 0

#
:

Fix N � �h as the largest non-zero power of z in ~�. Consider the following parametric

structure for B� , Ba, and Bz:264B� (z)

Ba(z)

Bz(z)

375 =

264�� (z) I

�a(z) (1� z)�1�a;0

0 �z;0 + �z;1z

375
with

�� (z) =
h
��;



and

	0 � 	(z) =
h
(1� �)

�
�0z;0 + ��0z;1

�
�0z;0

i
:

Notice that (i) the left-hand side, �(z), is exogenously determined by the aggregate economy

that we are trying to implement, and (ii) we have 	0 as a degree of freedom to induce an

arbitrary unconditional covariance on the right-hand side. Writing out the right-hand side

in the time-domain, we have

�0 = 	0 � ��0�;1 +
�2

1� �2
+

NX
j=1

��;j�
0
�;j(I + �) +

NX
j=1

�j�j��;j� (64)

�s = �s�0�;s(I + �)� �s+1�0�;s+1��
�

j �



where the �rst equality exploits that by Theorem 1 � p;hi;t ? �hi;t�s and thus � p;hi;t ? (ni;t�s; ci;t�s)

for all s � 0.

Similarly, substituting for wi;t using the �rm’s labor demand and taking �rst di�erences,

orthogonality of the �rm wedge with respect to dwi;t requires

Cov[� p;fi;t ; dai;t + dpi;t + d� p;fi;t ] = Cov[� p;hi;t ; d�
p;f
i;t ] = 0: (67)

Here the �rst equality follows as � p;fi;t ? �fi;t�0 implies � p;fi;t ? ni;t�0 for all s � 0 and, hence,

� p;fi;t ? (dyi;t � dni;t + dpi;t) under the conditions of the proposition.

Subtracting (66) from (67), we have

Cov[� pi;t; d�
p
i;t � �t] = 0

or

(1� Corr[ŷt; ŷt�1]) ��1Var[ŷt]� Cov[ŷt; �t] = �
�
1� Corr[�� pi;t;��

p
i;t�1]

�
Var[�� pi;t] � 0;

which implies the bound given in the statement of the proposition.

C Online Appendix: Estimation of Unrestricted Wedge

Process

Here we describe the methodology for estimating the unrestricted wedges �̂t used in Section 5.

C.1 Description of Methodology

We model the unrestricted wedges as a MA(14) process, which loads on two intrinsic inno-

vations, represented by the 2� 1 vector ut, in addition to the productivity shock �t,

�t = ��(L)�t + �u(L)ut;

where ��(L) and �u(L) are square-summable lag polynomials in non-negative powers of L,

and �t and ut are orthogonal white noise. W.l.o.g., we normalize Var[ut] = I2, leaving us to

estimate ma � (��;�u; ��). For this purpose, we use the generalized method of moments

(GMM) to minimize the distance between the model’s covariance structure and U.S. data on
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real per-capita output, ination, nominal interest rates, and per-capita hours.31 Let

~
T = vechfVar[(~qdata
t ; : : : ; ~qdata

t�k )]g;

denote the empirical auto-covariance matrix of frequency-�ltered quarterly US data for q �
(yt; �t; it; nt). We target auto-covariances between zero and k = 8 quarters. For the �ltering,

we use the Baxter and King (1999) approximate high-pass �lter with a truncation horizon of

32 quarters, which we denote by ~qt � BK 32(qt).
32

To conserve on the 91 parameters that characterize ma, we make two observations, doc-

umented in Figure 4 below. First, ~
T is well-described by a VAR(1) process for �t. Second, a

MA(14) truncation of the VAR(1) process that best replicates ~
T is almost indistinguishable

(in terms of second moments) from the VAR(1) process itself. Accordingly, we construct ma

by �rst estimating �t as a VAR(1) that is driven by ut and �t, and then constructing ̂ma as

the MA(14) truncation of the estimated process.33

Let ar denote the 10 parameters characterizing the VAR(1) and ��. Then the estimator

is given by

̂ar = argmin
ar

(~
T � ~
(ar))
0W�1(~
T � ~
(ar)); (68)

where ~
(ar) is the model analogue to ~
T and W is a diagonal matrix with the bootstrapped

variances of ~
T along the main diagonal. To avoid the issues detailed in Gorodnichenko and

Ng (2010), our model analogue ~
(ar) is computed after applying the same �ltering procedure

to the model that we have applied to the data.

A �nal challenge for estimating the model is that �ltering the model can be computa-

tional expensive. We address this issue by proving the following equivalence results (see

Appendix C.3 for proof).

Lemma 3. Estimator (68) is equivalent to

̂ar = argmin
ar

(
T � 
(ar))
0 ~W�1(
T � 
(ar)); (69)

where 
 � vechfVar[(dst; : : : ; dst�K)]g and ~W � (�0W�1�)
�1

for K = k + 2�� . The trans-

31Data range from 1960Q1 to 2012Q4. Real output is given by nominal output divided by the GDP
deator. Ination is de�ned as the log-di�erence in the GDP deator. Interest rates are given by the Federal
Funds E�ective rate. Hours are given by hours worked in the non-farm sector. Variables are put in per-capita
terms using the non-institutional population over age 16.

32The Baxter and King (1999) �lter requires speci�cation of a lag-length �� for the approximation. We set
�� to their recommended value of 12.

33Our estimator penalizes excessively persistent dynamics beyond the usual business cycle horizon by
imposing a numerical penalty on impulse responses beyond 32 quarters.
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�dence intervals (depicted by the shaded areas). The solid blue and red lines show the

corresponding moments for the estimated model for the VAR(1) and MA(14) truncation of

the wedges, respectively. Each row i and column j in the table of plots shows the covariances

between ~qit and ~qjt�k with lags k 2 f0; 1; : : : ; 8g depicted on the horizontal axis. Despite the

parametric restriction on �t and at and the fact that we have less shocks than data series, the

unrestricted-wedge model does a very good job at capturing the auto-covariance structure

of the four time series. In addition, there is no notable di�erence between the VAR(1) and

MA(14) truncation of �t.

C.3 Proof of Lemma 3





where

� = P0

2664
BL0 
BL0

...

BLk 
BL0

3775P1 (74)

with B and Lj as in (72) and (73). Substitution in (70) yields (71).

D Online Appendix: Comparative Statics With Coun-

tercyclical Ination

In analogue to Figure 2, we explore comparative statics with respect to the parametrization

of the micro-shocks, but for the case where ination is countercyclical with ŷ� = �:3. The

results, shown in Figure 5, display the same qualitative pattern as for the procyclical case

explored in the main text. While the maximal volatility is higher, we again see a clear positive

relationship between �max
ŷ and the volatilities of the micro shocks. As before, the impact of

idiosyncratic demands shocks is most relevant, paralleling their key role in the procyclical

case.

Here we do not include the cases without demand uncertainty (pi;t 2 �f
i;t), because in line

with our discussion in the main text, in these cases ination is necessarily procyclical (see

Appendix B.3 for a formal proof). Intuitively, this reects again the discrepancy in propa-

gation underlying the pro- and countercyclical ination cases: While procyclical ination is

tied to nominal misperception and expectation errors about aggregate prices, countercylical

ination is tied to expectation errors regarding local demand, and thus is impossible to im-

plement when pi;t is observed by �rms. (See also the explanations given in the context of

Figure 1.)
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