


1 INTRODUCTION

1 Introduction

In this paper we aim to determine the causal e�ect of online advertising on consumer be-
havior. We do so in the context of analyzing a dataset that characterizes consumer behavior
(clicks) on the page of search results on Bing.com, Microsoft’s search engine. The page of
search results on Bing.com, similarly to other search engines contains the \organic" content,
which is the list of links to the content that Bing’s search algorithm identi�ed as relevant
to the search keywords. In addition, the page has clearly marked \paid" content which is
the set of links that were placed on the page because the advertisers paid for them to be
displayed. In our data we observe consumer search term, the content of the page with all
organic and paid results, and the consumer clicks on the page within the same search session.
Of interest in this study is to evaluate the e�ect of ads on the overall consumer clicks on the
page of search results.

Evaluation of the e�ect of advertising is important for monetization in the industries
whose revenues are exclusively or mainly rely on advertising revenues. At the same time,
the increase in the targeting capabilities has led to an overall conation of the e�ect of ad
targeting from the e�ect of advertising per se. In this case it is di�cult to distinguish whether
the display of an ad hascausedthe consumer to act on that ad (such as click on it or purchase
the product) or if the consumer with the targeted characteristics has already had an intent
to perform an action that the ad was promoting. In typical marketing settings measuring





2 SEMIPARAMETRIC MODEL

Y . The treatment assignment depends on the vector of observable consumer characteristics
� and the unobservable disturbanceV while the treatment outcome depends on the vector
of observable characteristics� and the unobservable disturbanceU. The full model can be
written as

Y = � D + f (� ) + U

D = 1f g(� ) � V � 0g;

where the functionsf (�) and g(�) are unknown. We assume that (U; V) has an arbitrary
correlation structure while E [U j �; � ] = 0. The object of interest is the treatment e�ect � .
We note that the standard treatment e�ect estimator in this case will su�er from the omitted
variable bias due to correlation betweenU and V . In the controlled experiment settings in
Blake, Nosko, and Tadelis (2015) and Lewis and Rao (2014)D can be viewed as exogenous,
in which case estimation and inference for� can be performed using existing methods for the
semi linear model- see, e.g. Robinson (1988), Newey and Donald (2014) when the dimension
of � is �xed, and Cattaneo, Jansson, and Newey (2016) for the case when it increases with
the sample size.

However, endogeneity of treatment complicates identi�cation and estimation of� . To
provide the identi�cation argument for � denote X = f (� ) and Z = g(� ). We �x those
variables focusing on the identi�cation of� . Note that

(Y � X ) D = � D + U D;

and thus
E [(Y � X ) D j X; Z ] = � F V (Z ) + E [U



3 FISHER INFORMATION FOR CAUSAL EFFECT �

Next, note that

E [Y j �; � ] = �P (Z ) + X + E [U j �; � ] = �P (Z ) + f (� ):

Then for any � and � 0 6= � and any � we can write

E [Y j � 0; � ] � E [Y j �; � ] = f (� 0) � f (� );

which identi�es f (�) up to scale. The scale then can be identi�ed by noticing that

E [Y j �; � ] = E [Y j �; Z ] = �P (Z ) + f (� ):

And thus
f (� ) = lim

Z !�1
E [Y j �; Z ]:

Using this expression we can establish another expression relating� to observed variables
as

� =
lim

Z ! + 1
E [Y j X; Z ] � lim

Z !�1
E [Y j X; Z ]

lim
Z ! + 1

P (Z ) � lim
Z !�1

P (Z )
: (2.1)

3 Fisher information for causal e�ect �

The fact that the identi�cation of the parameter of interest � requires the full exploration of
the support of index variablesX and Z has implications for thequality of its identi�cation.
More speci�cally, we are able to demonstrate that even in the model where functionf (�)
and g(�) are known, the Fisher information for � is equal to zero (in the terminology of
Ibragimov and Has’minskii (1981) and Bickel, Klaassen, Ritov, and Wellner (1993)). To
illustrate this property, we consider this simpler model by using our previous notation for
the unobservable variables (U; V) and observable variables (X; Z ) that we consider, we make
the following assumption:

Assumption 1 (i) The index variablesX and Z have a joint distribution whereZ has a

full support on R with the joint support not contained in any proper one-dimensional

subspace. The parameter of interest is in the interior of a convex compact setA ;

(ii) (U; V) have an absolutely continuous density conditional onX and Z with full support

on R2;

(iii) The conditional density of(



4 EMPIRICAL STRATEGY

We begin our analysis by noticing that we can construct examples of parametric distri-
butions for the errors and covariates in the triangular model in which the variance of the
score for parameter� is in�nite. The simplest way to construct such examples is to consider
cases of high correlation between errorsU



5 SIMULATION STUDY

\large dimensional" problem with hundreds of explanatory variables. Consequently, from
an implementation perspective, data driven dimension reducing methods will be needed and
we use variations of LASSO (Tibshirani (1996)). One can use global and local versions of
LASSO to estimate the components of the model. The local version can use pre-partitioning
of the data (by dates, geography or other variables that may lead to \structural breaks" in
the data). The global version uses the entire sample. Before running LASSO we need to
transform all categorical variables intodummy variables. We also perform standard scaling
of all continuous variables and interactions (Tibshirani (1996)).

The model is estimated in two steps. In the �rst step we estimate the propensity score
and the conditional expectation of the outcome variable. We do so by, �rst, running LASSO
with the logistic loss function (e.g. see (Negahban, Yu, Wainwright, and Ravikumar 2009))
to perform variable selection for both models. Then we estimate standard logisitc regressions
with selected variables to reduce bias arising from regularization.

In the second step we use �tted values of the propensity score and the expected outcome
to construct a sample analog of estimator (2.1). To do so, we use threshold� to select
the �tted values of the propensity score su�ciently close to upper and lower bounds of its
support. Then we estimate the treatment e�ect using pairs of observations

b� � =
1

n(n � 1)

nX

i 6= j

( bYi � bYj )D i (1 � D j )1fj bPi � bPj j < � g; (4.2)

where D i is the observed treatment status for observationi , bYi is the �tted value of the
estimated conditional expectation of the outcome variable, andbPi is the corresponding �tted
value of the propensity score.

5 Simulation Study

In the this section we explore the �nite sample performances of the newly proposed estimation
procedure. We simulate from two designs of the following model:

di = I [z0
i � 0 � � i > 0]

yi = � 0di + x0
i � 0 + � i

Where in the simulated model, the variables observed to the econometrician are the
scalarsdi ; yi and the vectors (of large dimension)zi ; x i , whose values are used to estimate
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the parameter � 0, using the proposed three step procedure. In the above model,� 0; � 0 are
large dimensional vectors of constants unknown to the econometrician but only estimated for
the purpose of estimating and conducting inference on the primary parameter of interest,� 0.
Note that since we let bothx i ; zi be high dimensional, the linear index speci�cation can be
viewed a approximation of unknown functions. So in that senseE [di jzi ] is approximated by a
nonparametric propensity scoreP (zi ) and the regression function for the second equation is
approximately of a semi linear formyi � di � 0+ f (x i )+ � i . In our designs, the high dimensional
vectors, x i ; zi were distributed multivariate normal with varying covariance matrices. The
disturbance terms� i ; �
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many more observations.

Design 2 complicates the design by allowing for correlation among the regressors. Specif-
ically, each pair of regressors were correlated at level proportional to how far the regressors
were apart. So, for example the �rst and second regressor were much more correlated than
the �rst and the one hundredth were. Precisely, we used the function exp(� 2 � j ii � jj j) to
denote the pairwise correlation matrix, asii; jj each went from one to 100, denoting which
component ofx i or zi we were referring to. Results for this design are reported in table 2.
We see that �nite sample biases are noticeably larger in this designs as is to be expected.
But for all levels of endogeneity, acceptable levels are still achieved as the sample size reaches
4000. Again we deem tis more than satisfactory as the sample size in our application is much
larger than this.

Finally we consider a design that is motivated by our application. Here we simulate data
that is based on the data used in our application. In that sense this part of the section can be
referred to as an \empirical monte carlo study". To generate data for this design we worked
with the 36 remaining "post-lasso" regressors discussed in Section 4. We took summary
statistics of these variables from our observational data sample, including means, variances
and pairwise covariances of all selected 36 variables. Using these summary statistics, we
generate draws of regressor values by drawing from a 36 dimensional multivariate normal
distribution with the tabulated mean vector and covariance matrix. Once we have these
regressor draws we generated values of treatment indicators and outcome variables using
regression coe�cients in each equation that were of small order, speci�cally 10� 4 which
was chosen to reect the order of magnitude of the indexes if each coe�cient were 1. The
treatment e�ect coe�cient was set to 1. For the disturbance terms we drew from a bivariate
normal distribution with correlation 0.5, mean of 0 and variances of 1.

To implement our estimator we used a larger number of regressors by including all inter-
action terms and second moments of the the 36 regressors as explanatory variables. Then,
to use the three stage estimator, as we just did, we used the lasso command in matlab,
again attaining lasso �ts using 10-fold cross validation to select the regularization parame-
ter. Trimming was performed as it was for Designs 1,2. Table 3 reports results from 10000
replications using sample sizes of 1,2,4, and 8 thousand observations. The results are for the
same summary statistics we considered in tables 1 and 2. As results indicate, our proposed
estimation procedure performs quite well in this empirical design. All statistics appear to
decline with the sample size though again, and in accordance with the theory, not at the
parametric rate.
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TABLE 1

Design 1

n = 500 n = 1000 n = 2000 n = 4000 n = 8000

� = 0

Mean -0.0200 -0.0442 -0.0111 -0.0221 0.0080

Median -0.0101 -0.0706 -0.0354 -0.0394 -0.0290

RMSE 0.3311 0.3139 0.2141 0.1629 0.1443

MAD 0.2142 0.2096 0.1452 0.1034 0.0916

� = 0 :25

Mean -0.0014 -0.0332 -0.0394 -0.0167 -0.0331

Median -0.0022 -0.0472 0.0590 -0.0239 -0.0396

RMSE 0.3233 0.2889 0.1981 0.1657 0.1434

MAD 0.2067 0.1855 0.1267 0.1078 0.0947

� = 0 :5
Mean -0.2534 -0.0574 -0.0112 -0.0222 -0.0512

Median -0.2505 -0.0474 -0.0206 -0.0214 -0.0494

RMSE 0.3235 0.1490 0.0787 0.0409 0.0587

MAD 0.2725 0.0983 0.0570 0.0376 0.0494

� = 0 :75

Mean -0.0432 -0.0806 -0.0879 -0.0802 -0.0968

Median -0.0502 -0.0978 -0.0991 -0.0964 -0.1084

RMSE 0.3256 0.3170 0.2059 0.1779 0.1523

MAD 0.2055 0.2297 0.1387 0.1286 0.1191

TABLE 2

Design 2

n = 500 n = 1000 n = 2000 n = 4000 n = 8000

� = 0

Mean -0.2654 -0.0246 -0.0097 -0.0051 -0.0007

Median -0.2861 -0.0394 -0.0306 -0.0246 0.0100

RMSE 0.4001 0.2985 0.2123 0.1723 0.1451

MAD 0.3149 0.2154 0.1452 0.1151 0.0948

� = 0 :25

Mean -0.3010 -0.0485 -0.0542 -0.0287 -0.0405

Median -0.3221 -0.0815 -0.0721 -0.0481 -0.0513

RMSE 0.4065 0.2961 0.2106 0.1634 0.1414

MAD 0.3295 0.2135 0.1469 0.1070 0.0973

� = 0 :5
Mean -0.2944 -0.0454 -0.0561 -0.0628 -0.0597

Median -0.3162 -0.0654 -0.0716 -0.0716 -0.0660

RMSE 0.4122 0.3035 0.1955 0.1654 0.1455

MAD 0.3361 0.2135 0.1352 0.1197 0.1000

� = 0 :75

Mean -0.2963 -0.0958 -0.0908 -0.0680 -0.0937

Median -0.3032 -0.1017 -0.1061 -0.0078 -0.1042

RMSE 0.4218 0.3004 0.2120 0.1707 0.1537

MAD 0.3279 0.2127 0.1480 0.1196 0.1166

10



5 SIMULATION STUDY

TABLE 3

Design 3

n = 500 n = 1000 n = 2000 n = 4000 n = 8000

� = 0

Mean -0.0959 -0.0450 -0.0205 -0.0096 -0.0039

Median -0.0937 -0.0454 -0.0206 -0.0102 -0.0044

RMSE 0.1367 0.0815 0.0491 0.0341 0.0229

MAD 0.0991 0.0568 0.0326 0.0231 0.0147

� = 0 :25

Mean -0.4655 -0.4292 -0.4118 -0.4042 -0.4005

Median -0.4633 -0.4348 -0.4128 -0.4043 -0.4021

RMSE 0.4743 0.4335 0.4146 0.4055 0.4012

MAD 0.4633 0.4348 0.4128 0.4043 0.4021

� = 0 :5
Mean -0.8198 -0.8053 -0.8026 -0.7991 -0.7990

Median -0.8198 -0.8051 -0.8019 -0.8001 -0.7986

RMSE 0.8239 0.8075 0.8037 0.7997 0.7993

MAD 0.8198 0.8051 0.8019 0.8001 0.7986

� = 0 :75

Mean -1.1646 -1.1829 -1.1917 -1.1928 -1.1970

Median -1.1641 -1.1813 -1.1925 -1.1934 -1.1969

RMSE 1.1667 1.1840 1.1922 1.1931 1.1972

MAD 1.1641 1.1813 1.1925 1.1934 1.1969

TABLE 4

Design 4

n = 500 n = 1000 n = 2000 n = 4000 n = 8000

� = 0

Mean -0.0973 -0.0473 -0.0193 -0.0074 -0.0013

Median -0.0995 -0.0497 -0.0171 -0.0095 -0.0007

RMSE 0.1383 0.0847 0.0533 0.0347 0.0243

MAD 0.1035 0.0598 0.0360 0.0235 0.0168

� = 0 :25

Mean -0.3516 -0.2977 -0.2656 -0.2440 -0.2305

Median -0.3503 -0.3035 -0.2645 -0.2445 -0.2311

RMSE 0.3640 0.3059 0.2708 0.2463 0.2318

MAD 0.3503 0.3035 0.2645 0.2445 0.2311

� = 0 :5
Mean -0.5882 -0.5378 -0.5083 -0.4873 -0.4612

Median -0.5909 -0.5396 -0.5078 -0.4882 -0.4605

RMSE 0.5952 0.5419 0.5107 0.4886 0.4619

MAD 0.5909 0.5396 0.5078 0.4882 0.4605

� = 0 :75

Mean -0.8217 -0.7878 -0.7506 -0.7188 -0.6870

Median -0.8229 -0.7883 -0.7502 -0.7183 -0.6872

RMSE 0.8258 0.7902 0.7519 0.7194 0.6874

MAD 0.8229 0.7883 0.7502 0.7183 0.6872
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TABLE 5

Design 3

n = 1000 n = 2000 n = 4000 n = 8000

� = 0 :5
Mean 0.0210 0.0108 -0.0037 -0.0166

Median 0.0265 0.0155 -0.0031 -0.0158

RMSE 0.0486 0.0322 0.0197 0.0211

MAD 0.0305 0.0238 0.0117 0.0160

6 Empirical Context and Results

Our empirical context is \sponsored search." Search engines return two classes of results,
\algorithmic" or \organic" results which are based on webpage relevance to the intent of the
search query and sponsored results that are based on relevance and an advertiser submitted
bid. Sponsored results, if there are any, appear above the organic results in the most visually
prominent portion of the page. Advertisers pay for \consideration," as measured by clicks,
and clicks are thus the central unit of analysis in sponsored search. However, estimating the
causal impact of an ad is not as simple as computing the average pro�t made from a click
and comparing this to the \cost per click" paid. The reason is that many advertisers appear
in both the sponsored and organic results and past work has shown that some of the clicks on
sponsored links would have gone to the organic link in the absence of the sponsored results
(Reiley, Li, and Lewis (2010)). When the a search query contains a trademarked brand name,
this \cannabilization" of organic clicks for the \focal brand" can be very large, meaning that
naive estimates of ad e�ectiveness vastly overstate the true e�ect as shown in Blake, Nosko,
and Tadelis (2015). Furthermore, advertisers tend to bid higher for geolocations and time
periods in which they are more inherently clickable, introducing a form of omitted variable
bias.

Given these biases, most practitioners have viewed experiments as the only way to get
reliable estimates of ad e�ectiveness in this setting (Lewis, Rao, and Reiley (2014)). Indeed,
the data in our study come from a series of randomized experiments on the Bing search
engine. The experiments were conducted on a small fraction of U.S.-located users over nine
days in January of 2014 with randomization at the user level. Four experiments took place,
in which the maximum number of mainline ads was limited to 0, 1, 2, and 3. Each experiment
had a balanced control group, which corresponded to the maximum of 4 mainline ads, the
typical production setting. This is standard practice in online experimentation, as it provides
a check that each experimental \line" was executed correctly.

The treatment limited the number of ads that could be shown, but often this cap did
not bind. For instance, in the treatment group that limited mainline ads to a maximum of
3 (\Cap 3" to employ the terminology we will use throughout), if there were not enough
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