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1. Introduction

Crude oil markets have been quite volatile and risky in the past few decades due to the

large uctuations of oil prices. This has become a principal concern for oil suppliers, oil

consumers, relevant �rms and governments. In addition, as a primary source of energy in the

power industry, industrial production and transportation, volatile oil prices may lead to cost

uncertainties for other markets, thus extensively a�ecting the development of the economy.

A large number of studies have shown that oil price uctuations could have considerable

impact on economic activities. Papapetrou (2001) argues that the variability of oil prices

plays a critical role in a�ecting real economic activity and employment. Lardic and Mignon

(2008) explore the long-term relationship between oil prices and GDP, and �nd evidence that

aggregate economic activity seems to slow down particularly when oil prices increase. This

asymmetry is found in both the U.S. and European countries. Consequently, quantifying

and managing the risks inherent to the volatility of oil prices has become critical for both

researchers and energy market participants.

The Value at Risk (VaR) measure, which was �rst proposed by J.P. Morgan in the

RiskMetrics model in 1994, has been developed as one of the most popular approaches

in �nancial markets to manage market risk. VaR de�nes the maximum amount that an

investor can face for a given tolerance level over a certain time horizon. Although VaR is

recommended by Basel II and III and has been widely adopted by �nancial institutions, it

has been challenged by the Bank of International Settlements (BIS) Committee, who pointed





2. Stochastic volatility models

We use a general SV model to capture the volatility features for oil markets which has

been studied recently by Takahashi et al. (2009), Chai et al. (2011) and Chan et al. (2016a):

yt = �+ �tzt (1)

ln�2
t = ht = � + �(ln�2

t�1 � �) + �t �t � N(0; �2
�) (2)

where yt denotes stock returns at time t with t = 1; 2; :::; T , � denotes the conditional mean, �t

is the stochastic volatility, ln�2
t follows a stationary AR(1) process with persistence parameter

� having j�j < 1, zt and �t represent a series of independent identical (i:i:d:) random errors

in the return and volatility equation, respectively.2

For this general equation, we consider various possible speci�cations of the shocks zt

a�ecting stock returns.

(1) Standard Student t errors

zt � t�

where � is the degrees of freedom of t-distribution.

(2) Standard Normal errors

zt � N (0; 1)

(3) Standard Asymmetric Laplace errors

zt � ALD (0; �; 1)

where � = 1 and � is the coe�cient driving the skewness of the distribution, is related to �

and � as follows:

� =
�p
2

�
1

�
� �
�

as a special case � = 1 for � ’ 0 and � = e
ht
2 > 0 (Symmetric Laplace Distribution).3

2A number of original empirical works via extended SV models can be found from Breidt et al. (1998), So
et al. (1998), Yu and Yang (2002), Koopman and Uspensky (2002), Cappuccio et al. (2004), Chan (2013),
Chan and Hsiao (2013), Chan and Grant (2016c), Chan (2017).

3See appendix for the density of ALD.
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(4) Standard Student t errors with leverage e�ect

yt = �+ �tzt

zt � t�

ln�2
t = ht = � + �

�
ln�2

t�1 � �
�

+ �t

�t = �zt +
p

1� �2�t

�t � N
�
0; �2

�

�
where the coe�cient � drives the so called leverage e�ect. It models the correlation between

the shocks a�ecting returns and the shocks a�ecting volatility. For example, a negative �

would mean that negative shocks to returns are likely to be associated to positive shocks to

volatility: negative shocks to �nancial markets would trigger higher volatility and riskiness.

Of course for � = 0, the model would be simply the regular SV-t model with no leverage e�ect.

(5) Standard Normal errors with leverage e�ect

yt = �+ �tzt

zt � N (0; 1)

ln�2
t = ht = � + �

�
ln�2

t�1 � �
�

+ �t

�t = �zt +
p

1� �2�t

�t � N
�
0; �2

�

�
where � is the coe�cient driving the leverage e�ect in the SV-N-L model.

(6) Standard Asymmetric Laplace distributed errors with leverage e�ect

yt = �+ �tzt

zt � ALD (0; �; 1)

ln�2
t = ht = � + �

�
ln�2

t�1 � �
�

+ �t

�t = �zt +
p

1� �2�t

�t � N
�
0; �2

�

�
where � is the coe�cient driving the leverage e�ect in the SV-ALD-L model.
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3. VaR and CVaR models

Considering V aRs;t(l) and V aRd;t(l) as the VaR for oil supply and demand in l-period

with con�dence level (1� �) 2 (0; 1) respectively, then, we have:

Supply : Prob (yt(l) � �V aRs;t(l)j
t) = � (3)

Demand : Prob (yt(l) � V aRd;t(l)j
t) = � (4)

where yt(l) represents the oil return series for period (from t to t+ l), 
t is the information

set up to time t, � is the risk level, and the value of V aRs;t and V aRd;t are de�ned to be

positive. Likewise, CV aRs;t(l) and CV aRd;t(l) are de�ned as the CVaR of oil supply and

demand respectively over period l at con�dence level (1��), and they can be mathematically

expressed as:

Supply : CV aRs;t(l) = �Efyt(l)jyt(l) � �V aRs;t(l)g (5)

Demand : CV aRd;t(l) = Efyt(l)jyt(l) � V aRd;t(l)g (6)

3.1. In the SV-N setting

Now we introduce the VaR and CVaR formulas under the SV-N framework.

Risk for oil Supply

(1) VaR: V aRn;s;t = ��� �t��1(�)

where ��1(�) is the inverse cumulative distribution function of a N(0,1). In order to model

the leverage e�ect in this setting, we use �t(�).

(2) CVaR: CV aRn;s;t = �E
�
ytj yt � �V aRn;s;t

�
= ��� �t

�
�(��1(�))

where �(�) is the probability density function of a N (0,1). To model the leverage e�ect in

this setting, we use �t(�).

Risk for oil demand

(1) VaR: V aRn;d;t = �+ �t�
�1(�)

where ��1(�) is the inverse cumulative distribution function of a N(0,1). To model the

leverage e�ect in this setting, we use �t(�).

(2) CVaR: CV aRn;d;t = E
�
ytj yt � V aR

n;d;t

�
= �+

�t
�
�(��1(�))
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where �(�) is the probability density function of a N (0,1). To model the leverage e�ect in

this setting, we use �t(�).

3.2. In the SV-ALD setting

We now introduce the VaR and CVaR formulas under the SV-ALD model.

Risk for oil Supply

(1) VaR: V aRs;t = ��+ms;q�t = ��� ��tp
2
ln
�(1 + �2)

�2

where ms;q = (V aRs;t + �)=�t is de�ned as the left �-quantile of the AL distribution. In

order to model the leverage e�ect in this setting, we use �t(�).

(2) CVaR: CV aRs;t = �E
�
ytj yt � �V aRs;t

�



4.1. Scale mixture of uniform representation of ALD

Expressing the ALD via the representation can alleviate the computational burden when

using the Gibbs sampling algorithm in the MCMC approach and thus can simplify the

estimation method in Bayesian analysis. To estimate the latent variables in the SV model,

we use the scaled ALD (SALD) which means that the ALD random variable is scaled by its

standard deviation (See Chen et al., 2009 and Wichitaksorn et al., 2015).

Proposition 1. Let zt be the ALD random variable with zt � ALD(0; �; 1), then the random

variable "t = zt
S:D:[z]

has SALD with p:d:f: given by:

f("tj�; �t) =

8>><>>:
p

1 + �4

1 + �2

1

�t
exp(
�
p

1 + �4

�t
"t) "t � 0

p
1 + �4

1 + �2

1

�t
exp(

p
1 + �4

�2�t
"t) "t < 0

(7)

where � is skewness parameter and �t is the standard deviation (or the time-varying volatility)

of zt.
5

Hence, the corresponding SMU of SALD can be obtained as follows:

Proposition 2. If �t � Ga(2; 1) and "t � U("tj � �t�2�tp
1+�4 ;+

�t�tp
1+�4 ), then the SMU density:

f("tj�; �t; �t) =

Z 1
0

fU("tj �
�t�

2�tp
1 + �4

;+
�t�tp
1 + �4

)� fGa(�tj2; 1) d�t (8)

has the same form as the SALD density function given in equation (7).6

Using the SMU representation of SALD, an e�cient simulation algorithm is developed to

overcome parameter estimation di�culties. As a result, the SV model discussed in section 2

can be written hierarchically as:

Return equation:

ytj�; �t; ht � U(� �t�
2eht=2p

1 + �4
;+

�te
ht=2

p
1 + �4

) (9)

�t � Ga(2; 1) (10)

5Note that original scale parameter has been canceled in this derivation, while the location parameter �
is set to be 0 in real practice. See appendix C for the derivation.

6See appendix D for the derivation.
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Volatility equation:

htj�; �; �2
�; ht�1 �N(� + �(ht�1 � �



ALD which, according to Kotz et al. (2001), is given by:

F (zj�; �; �) =

8>><>>:
1� 1

1 + �2
exp

�
�
p

2�

�
z

�
z � 0

�2

1 + �2
exp

�p
2

��
zz



Table 1: MCMC estimation results for the SV-ALD model for the simulated data

Parameter True Mean Median SD MC errors 95% CI

� -7.58700 -7.92400 -7.92300 0.90820 0.00647 (-9.48900, -6.35700)

� 0.99470 0.99600 0.99610 0.00190 0.00006 (0.99160, 0.99910)

�� 0.08890 0.12880 0.125700 0.01610 0.00091 (0.10600, 0.17430)

� 0.99560 0.97630 0.975100 0.01190 0.00068 (0.95610, 1.00200)

The following prior distribution are assumed: � � N(�10; 0:001) with 0:001 = 1=�2
� ;

�� � Ga(2:5; 0; 025) with �� = 1=�2





Table 2: Descriptive statistics for WTI and Brent oil price returns

WTI Brent

Panel A: Descriptive statistics

Mean -0.000144 -0.000127

Std.dev. 0.024863 0.021998

Maximum 0.164137 0.181297

Minimum -0.128267 -0.168320

Skewness 0.1567 0.1443

Kurtosis 7.6122 8.8043

J-B test 2243.0570*** 3547.5790***

Q(10) 30.6030*** 16.9600*



Table 3: Posterior summary statistics for the parameters in SV-t, SV-N and SV-ALD models

Market Parameter Mean SD MC error 95% CI

SV-t

WTI

� 13.42000 2.83100 0.13450 (9.24600,20.10000)

� -9.77200 0.34470 0.00298 (-10.44000,-9.08500)

� 0.99830 0.00101 0.00002 (0.99580,0.99970)

�� 0.09595 0.01143 0.00060 (0.07470,0.11840)

Brent

� 12.61000 2.50600 0.11710 (8.78900,18.43000)

� -9.76700 0.34190 0.00300 (-10.43000,-9.09200)

� 0.99850 0.00094 0.00002 (0.99620,0.99980)

�� 0.08333 0.01086 0.00058 (0.06549,0.10730)

SV-N

WTI

� 0.00037 0.00034 0.00000 (-0.00030,0.00103)

� -9.76100 0.34660 0.00298 (-10.43000,-9.06800)

� 0.99780 0.00122 0.00003 (0.99490,0.99950)

�� 0.11760 0.01360 0.00072 (0.09209,0.14630)

Brent

� 0.00013 0.00031 0.00000 (-0.00046,0.00074)

� -9.78700 0.34210 0.00277 (-10.45000,-9.10000)

� 0.99860 0.00089 0.00002 (0.99640,0.99980)

�� 0.08933 0.01019 0.00054 (0.07112,0.11030)

SV-ALD

WTI

� 0.99560 0.01592 0.00083 (0.96590,1.02800)

� -7.58700 0.48730 0.00408 (-8.42200,-6.69800)

� 0.99470 0.00224 0.00005 (0.98990,0.99870)

�� 0.08891 0.00992 0.00051 (0.07065,0.10810)

Brent

� 0.99820 0.01206 0.00061 (0.97510,1.02200)

� -7.75000 0.56200 0.00587 (-8.66000,-6.69600)

� 0.99590 0.00184 0.00004 (0.99200,0.99910)

�� 0.07351 0.00812 0.00042 (0.06106,0.09410)
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Table 4: Posterior summary statistics for the parameters in SV-t-L, SV-N-L and SV-ALD-L models

Market Parameter Mean SD MC error 95% CI

SV-t-L

WTI

� -0.62110 0.07616 0.00422 (-0.75940, -0.47680)

� 10.90000 1.63300 0.06735 (8.22400, 14.50000)

� -9.71700 0.35290 0.00376 (-10.39000, -9.01300)

� 0.99830 0.00091 0.00002 (0.99610, 0.99960)

�� 0.09112 0.01027 0.00058 (0.07171, 0.10950)

Brent

� -0.57170 0.07303 0.00396 (-0.69400, -0.42250)

� 12.38000 2.79900 0.13860 (8.56100, 19.59000)

� -9.75300 0.34420 0.00327 (-10.42000, -9.07100)

� 0.9986 0.00084 0.00002 (0.99650, 0.99970)

�� 0.08100 0.00946 0.00053 (0.06535, 0.10170)

SV-N-L

WTI

� -0.54850 0.07225 0.00387 (-0.66870,-0.39170)

� -0.00009 0.00035 0.00001 (-0.00078,0.00059)

� -9.73200 0.35170 0.00310 (-10.41000,-9.02700)

� 0.99810 0.00100 0.00002 (0.99570,0.99960)

�� 0.11110 0.01034 0.00057 (0.09117,0.13000)

Brent

� -0.62630 0.05649 0.00300 (-0.74130,-0.51490)

� -0.00025 0.00031 0.00000 (-0.00085,0.00035)

� -9.78400 0.34170 0.00304 (-10.45000,-9.10800)

� 0.99880 0.00070 0.00001 (0.99710,0.99980)

�� 0.08544 0.00821 0.00045 (0.07289,0.10570)

SV-ALD-L

WTI

� -0.74780 0.05345 0.00303 (-0.83640,-0.63140)

� 1.00100 0.01336 0.00077 (0.97690,1.02700)

� -7.75400 0.38370 0.00485 (-8.46500,-7.12300)

� 0.99550 0.00156 0.00004 (0.99230,0.99840)

�� 0.09288 0.00826 0.00047 (0.07945,0.10980)

Brent

� -0.67460 0.06573 0.00369 (-0.78440,-0.53440)

� 1.00700 0.01282 0.00073 (0.98060,1.02900)

� -7.91800 0.53680 0.00447 (-8.93000,-6.97100)

� 0.99690 0.00151 0.00005 (0.99340,0.99930)

�� 0.07427 0.00942 0.00055 (0.06148,0.09575)

15







Table 9: Out-of-sample performance for various models: RMSE and MAE for May-December 2016

Market SV-t SV-t-L SV-N SV-N-L SV-ALD SV-ALD-L

RMSE

WTI 0.034910 0.034952 0.033276 0.033010 0.038417 0.035692

Brent 0.038329 0.037781 0.038010 0.037333 0.037907 0.038116

MAE

WTI 0.026940 0.026973 0.025831 0.025362 0.028911 0.026794

Brent 0.029482 0.029095 0.029476 0.028731 0.028495 0.028391

the out-of-sample RMSE and MAE (to test the predictive power of the models) and, more

importantly, the capability of the models to replicate risk in a VaR and CVaR sense.

Out-of-sample performance. Table 9 shows the out-of-sample performance for various

models using the Root Mean square errors (RMSE) and Mean Absolute errors (MAE) criteria.

We used the MCMC estimates from May 2006 to May 2016 to forecast oil returns from the

end of May 2016 to the end of December 2016: the SV-N-L model performs better than

its competitors for both markets if we consider the RMSE criterion (calculated using 500

simulations and �xing the parameters at the MCMC estimates). Considering the MAE

criterion, SV-ALD-L and SV-N-L perform the best.

Table 10 to Table 15 present the results of Engle’s LM ARCH test on the standard

errors for SV-t, SV-t-L, SV-N, SV-N-L, SV-ALD and SV-ALD-L models in both markets.

Considering the series of standard errors, there is no evidence of ARCH e�ects for the SV-N

model while the SV-N-L model shows ARCH e�ects in the WTI market at a 1% signi�cance

level. This result gives an opportunity to increase e�ciency by modeling ARCH, but does

not violate any assumptions made when estimating the underlying model. As a conclusion,

the SV-N model is the most e�cient among the set of models that have been studied in



Table 10: WTI: Engle’s Lagrange multiplier test for autoregressive conditional heteroskedasticity for
standardised residuals and squared standardised residuals for SV-t and SV-t-L models

1 lag p-val 5 lags p-val 10 lags p-val 30 lags p-val

SV-t res 2.04 0.15 8.98 0.11 13.75 0.18 47.15 0.02

SV-t res squ 0.19 0.66 0.82 0.98 1.66 1.00 11.50 1.00

SV-t-L res 3.51 0.06 9.46 0.09 12.79 0.24 39.48 0.12

SV-t-L res squ 0.09 0.76 0.57 0.99 0.98 1.00 31.60 0.39

Table 11: WTI: Engle’s Lagrange multiplier test for autoregressive conditional heteroskedasticity for
standardised residuals and squared standardised residuals for SV-N and SV-N-L models

1 lag p-val 5 lags p-val 10 lags p-val 30 lags p-val

SV-N res 0.00 0.95 16.21 0.01 27.56 0.00 77.20 0.00

SV-N res squ 0.03 0.87 1.99 0.85 4.29 0.93 19.90 0.92

SV-N-L res 0.24 0.63 11.73 0.04 20.67 0.02 60.18 0.00

SV-N-L res squ 0.07 0.79 1.23 0.94 3.07 0.98 18.77 0.94

Table 12: WTI: Engle’s Lagrange multiplier test for autoregressive conditional heteroskedasticity for
standardised residuals and squared standardised residuals for SV-ALD and SV-ALD-L models

1 lag p-val 5 lags p-val 10 lags p-val 30 lags p-val

SV-ALD res 7.31 0.01 9.72 0.08 11.20 0.34 35.24 0.23

SV-ALD res squ 0.63 0.43 1.04 0.96 1.49 1.00 13.45 1.00

SV-ALD-L res 13.69 0.00 15.75 0.01 18.05 0.05 39.41 0.12

SV-ALD-L res squ 7.55 0.01 8.13 0.15 8.62 0.57 36.25 0.20

Table 13: Brent: Engle’s Lagrange multiplier test for autoregressive conditional heteroskedasticity for
standardised residuals and squared standardised residuals for SV-t and SV-t-L models

1 lag p-val 5 lags p-val 10 lags p-val 30 lags p-val

SV-t res 5.40 0.02 17.55 0.00 26.16 0.00 50.28 0.01

SV-t res squ 0.69 0.41 3.92 0.56 5.91 0.82 33.66 0.29

SV-t-L res 5.35 0.02 14.18 0.01 21.18 0.02 43.89 0.05

SV-t-L res squ 0.51 0.47 3.36 0.64 5.18 0.88 27.70 0.59
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Table 14: Brent: Engle’s Lagrange multiplier test for autoregressive conditional heteroskedasticity for
standardised residuals and squared standardised residuals for SV-N and SV-N-L models

1 lag p-val 5 lags p-val 10 lags p-val 30 lags p-val

SV-N res 7.17 0.01 22.48 0.00 34.65 0.00 70.86 0.00

SV-N res squ 1.22 0.27 6.91 0.23 10.47 0.40 31.61 0.39

SV-N-L res 5.38 0.02 13.79 0.02 21.96 0.02 47.77 0.02

SV-N-L res squ 0.78 0.38 4.29 0.51 7.01 0.72 22.95 0.82

Table 15: Brent: Engle’s Lagrange multiplier test for autoregressive conditional heteroskedasticity for
standardised residuals and squared standardised residuals for SV-ALD and SV-ALD-L models

1 lag p-val 5 lags p-val 10 lags p-val 30 lags p-val

SV-ALD res 0.94 0.33 6.24 0.28 9.97 0.44 26.97 0.62

SV-ALD res squ 0.10 0.75 1.42 0.92 2.64 0.99 35.76 0.22

SV-ALD-L res 2.70 0.10 8.02 0.15 11.89 0.29 28.67 0.54

SV-ALD-L res squ 0.33 0.56 1.81 0.87 2.84 0.98 14.38 0.99

Table 16: WTI: Test Statistics and P-values for standardised residuals and squared standardised residuals
for SV-t and SV-t-L models

KSmirnov p-val SFrancia p-val Qtest p-val

SV-t res 0.011 0.940 3.514 0.000 33.011 0.775

SV-t res squ 0.263 0.000 15.592 0.000 44.168 0.300

SV-t-L res 0.019 0.346 5.281 0.000 33.544 0.755

SV-t-L res squ 0.276 0.000 15.857 0.000 43.892 0.310

Table 17: WTI: Test Statistics and P-values for standardised residuals and squared standardised residuals
for SV-N and SV-N-L models

KSmirnov p-val SFrancia p-val Qtest p-val

SV-N res 0.009 0.988 0.414 0.340 33.470 0.758

SV-N res squ 0.245 0.000 15.165 0.000 54.062 0.068

SV-N-L res 0.016 0.576 2.627 0.004 33.652 0.750

SV-N-L res squ 0.253 0.000 15.339 0.000 47.908 0.183
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Table 18: WTI: Test Statistics and P-values for standardised residuals and squared standardised residuals
for SV-ALD and SV-ALD-L models

KSmirnov p-val SFrancia p-val Qtest p-val

SV-ALD res 0.015 0.587 4.652 0.000 32.453 0.796

SV-ALD res squ 0.273 0.000 15.766 0.000 40.367 0.454

SV-ALD-L res 0.020 0.241 5.749 0.000 34.901 0.699

SV-ALD-L res squ 0.280 0.000 15.907 0.000 45.253 0.262

Table 19: Brent: Test Statistics and P-values for standardised residuals and squared standardised residuals
for SV-t and SV-t-L models

KSmirnov p-val SFrancia p-val Qtest p-val

SV-t res 0.022 0.177 2.716 0.003 43.504 0.325

SV-t res squ 0.257 0.000 15.268 0.000 48.892 0.158

SV-t-L res 0.024 0.115 2.820 0.002 43.906 0.310

SV-t-L res squ 0.257 0.000 15.277 0.000 46.316 0.228

Table 20: Brent: Test Statistics and P-values for standardised residuals and squared standardised residuals
for SV-N and SV-N-L models

KSmirnov p-val SFrancia p-val Qtest p-val

SV-N res 0.021 0.201 1.865 0.031 43.025 0.343

SV-N res squ 0.250 0.000 15.102 0.000 56.556 0.043

SV-N-L res 0.023 0.156 2.340 0.010 42.681 0.357

SV-N-L res squ 0.253 0.000 15.175 0.000 47.479 0.194

Table 21: Brent: Test Statistics and P-values for standardised residuals and squared standardised residuals
for SV-ALD and SV-ALD-L models

KSmirnov p-val SFrancia p-val Qtest p-val

SV-ALD res 0.024 0.122 4.169 0.000 43.549 0.323

SV-ALD res squ 0.266 0.000 15.449 0.000 35.039 0.693

SV-ALD-L res 0.025 0.084 3.799 0.000 43.420 0.328

SV-ALD-L res squ 0.264 0.000 15.439 0.000 35.317 0.681
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Table 22: Diebold Mariano test: comparison of forecast accuracy over 500 out-of-sample predictions

Variable Observations Mean SD Min Max

WTI

SV-t vs SV-t-L

r1t 41 0.0010954 0.0004075 0.0006428 0.0023901

r2t 41 0.0011213 0.0003617 0.0005928 0.0022897

SV-N vs SV-N-L

r1t 241 0.0012336 0.0005985 0.0005911 0.0046736

r2t 241 0.0012112 0.0008895 0.0005486 0.0103819

SV-ALD vs SV-ALD-L

r1t 240 0.001657 0.0006006 0.0007806 0.0045232

r2t 240 0.0012848 0.0008002 0.0006352 0.0051321

Brent

SV-t vs SV-t-L

r1t 46 0.0014817 0.0004475 0.0008498 0.0028845

r2t 46 0.001352 0.000371 0.000789 0.0025136

SV-N vs SV-N-L

r1t 258 0.0015684 0.0006906 0.0007161 0.0063691

r2t 258 0.0014911 0.0008635 0.0006984 0.0078067

SV-ALD vs SV-ALD-L

r1t 209 0.0015392 0.0006215 0.0007717 0.0041496

r2t 209 0.00158 0.000905 0.0007069 0.0090912

and present summary statistics from that set of test results. Given an actual series and

two competing predictions, one may apply a loss criterion (such as squared error or absolute

error) and then calculate a number of measures of predictive accuracy that allow the null

hypothesis of equal accuracy to be tested. Table 22 reports the results where the r1 and

r2 variables are the MSEs for model 1 (non-leverage model) and model 2 (leverage model),

respectively. If the p� value < 0:05, the test rejects the null that the two models are equally

capable in terms of their MSEs. For the simulations in which the test rejects equal forecast

accuracy, we can compare the mean MSE for the two models.

For the WTI data, in the case of SV-t vs SV-t-L models, we can observe 41 rejections

(over 500 out-of-sample simulations): model 1 (the non-leverage model) has the smaller

mean MSE. Considering SV-N vs SV-N-L models, we can observe 241 rejections: model 2

(the leverage model) has the smaller mean MSE. Considering SV-ALD vs SV-N-ALD models,

we can observe 240 rejections: model 2 (the leverage model) has the smaller mean MSE. For

the Brent data, in the case of SV-t vs SV-t-L models, we can observe 46 rejections: model

2 (the leverage model) has the smaller mean MSE. Considering SV-N vs SV-N-L models,
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we can observe 258 rejections: model 2 (the leverage model) has the smaller mean MSE.

Considering SV-ALD vs SV-N-ALD models, we can observe 209 rejections: model 1 (the

non-leverage model) has the smaller mean MSE.

In summary, in four of the six simulations, model 2 (the leverage model) has the smaller

mean MSE for those simulations in which the Diebold{Mariano test rejects its null hypothesis

of equal forecast accuracy.

7.3. Selection of VaR and CVaR models

We now focus on the models for which we have the most evidence of a substantial impact

of the introduction of leverage on the prediction accuracy of the model (SV-N, SV-N-L,

SV-ALD and SV-ALD-L models). In order to classify the competing models, we follow a



Table 23: VaR backtesting results for WTI and Brent markets

� Risk
Failure times Failure rate LRuc LRind LRcc

WTI Brent WTI Brent WTI Brent WTI Brent WTI Brent

SV-N

5%
VaRst 107 122 4.248% 4.839% 0.0757 0.7099 0.8269 0.2114 0.1930 0.3869

VaRdt 111 116 4.407% 4.720% 0.1634 0.3754 0.9598 0.4968 0.3615 0.9944

1%
VaRst 22 24 0.873% 0.952% 0.5138 0.8071 0.5334 0.5334 0.6598 0.7559

VaRdt 16 22 0.635% 0.873% 0.0486 0.5113 0.6510 0.6591 0.1282 0.6524

SV-ALD

5%
VaRst 77 98 3.057% 3.887% 0.0000� 0.0077 0.6766 0.9211 0.0000� 0.0265

VaRdt 82 97 3.255% 3.848% 0.0000� 0.0057 0.4314 0.2596 0.0001� 0.0108

1%
VaRst 7 8 0.278% 0.317% 0.0000� 0.0001� 0.8434 0.8214 0.0001� 0.0003�

VaRdt 5 6 0.198% 0.238% 0.0000� 0.0000� 0.8878 0.8656 0.0000� 0.0000�

SV-N-L

5%
VaRst 112 126 4.446% 4.998% 0.1940 0.9964 0.3700 0.4934 0.2751 0.6781

VaRdt 103 109 4.086% 4.324% 0.0305 0.1111 0.3912 0.7538 0.0639 0.0105

1%
VaRst 31 25 1.231% 0.992% 0.2615 0.9664 0.3793 0.4789 0.3572 0.7546

VaRdt 13 21 0.516% 0.833% 0.0071 0.3856 0.7134 0.5523 0.0249 0.5609

SV-ALD-L

5%
VaRst 91 100 3.613% 3.967% 0.0008� 0.0137 0.0210 0.5969 0.0002� 0.0368

VaRdt 79 95 3.136% 3.768% 0.0000� 0.0031� 0.3571 0.8225 0.0000� 0.0108

1%
VaRst 9 6 0.357% 0.238% 0.0002� 0.0000� 0.7994 0.8656 0.0009� 0.0000�

VaRdt 5 5 0.198% 0.198% 0.0000� 0.0000� 0.8878 0.8878 0.0000� 0.0000�

Note: � = 5% and 1% represent prescribed VaR level corresponding to 95% and 99% CI respectively,
LRuc columns show p-values of Kupiec’s (1995) unconditional coverage test, LRind columns are p-values
of Christo�ersen’s (1998) independent test and LRcc columns are p-values of Christo�ersen’s (1998)
conditional coverage test, * denotes signi�cance.

Brent market especially when focusing on extreme tail risks (1%). Table 24 presents CVaR

backtesting results for SV-N, SV-ALD, SV-N-L and SV-ALD-L models for oil supply and

demand in the WTI and Brent markets. The performance of CVaR is very similar to the

VaR performance. Looking at the p-values of the SV-N and SV-N-L model, they pass the

three tests for the studied risk levels.

Considering both Tables 23 and 24, the main �nding is that the introduction of the

leverage e�ect in the traditional SV model with Normally distributed errors is capable of

adequately estimating risk (in a VaR and CVaR sense) for conservative (i.e. more risk averse,

with � = 5%) oil suppliers in both the WTI and Brent markets while it tends to overestimate

risk for more speculative oil suppliers (� = 5%). In comparison, the assumption of ALD errors
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Table 25: RLF and FLF Loss function approach applied to the models surviving the VaR backtesting stage

Volatility models
and VaR methods

RLF FLF

5% 1% 5% 1%

WTI Brent WTI Brent WTI Brent WTI Brent

Panel A: Average loss values

SV-N
Supply 0.000209 0.000199 0.000170 0.000182 0.001709 0.001555 0.000328 0.002279

Demand 0.000251 0.000237 0.000501 0.000227 -0.001680 -0.001531 -0.000499 -0.002274

SV-N-L
Supply 0.000239 0.000203 0.000176 0.000192 0.001755 0.001586 0.000353 0.002317

Demand 0.000229 0.000219 0.000511 0.000162 -0.001733 -0.001569 -0.000511 -0.002313

SV-ALD
Supply - 0.000250 - - - 0.001681 - -

Demand - - - - - - - -

SV-ALD-L
Supply - 0.000235 - - - 0.001716 - -

Demand - - - - - - - -

Panel B: Sign statistics

SAB
Supply 47.2408 46.9433 49.1934 49.4129 -13.0107� -11.6517� -9.9422� -9.2612�

Demand 48.8746 49.0146 49.9904 49.9307 12.0144 10.6155 9.5438 8.8230

SBA
Supply 48.4363 48.1382 49.9505 49.8909 13.0107 11.6517 9.9422 9.2612

Demand 46.8822 46.5051 49.7115 49.5722 -12.0144� -10.6155� -9.5438� -8.8230�

SCD
Supply - 48.1382 - - - -7.1102� - -

Demand - - - - - - - -

SDC
Supply - 47.8594 - - - 7.1102 - -

Demand - - - - - - - -

Note: This table compares the best performing models in the VaR backtesting procedure following the Regulatory
loss function (RLF) and Firm’s loss function (FLF). Panel A presents the average loss values for RLF and FLF
for the competing models at di�erent risk levels in the two oil markets. The models with the lowest average loss
values are underlined. Panel B reports the standardized sign statistics values. SAB denotes the standardized sign
statistics with null of \non-superiority" of SV-N over SV-N-L, SBA represents the standardized sign statistics with
null of \non-superiority" of SV-N-L over SV-N, SCD is the standardized sign statistics with null hypothesis of \non-
superiority" of SV-ALD over SV-ALD-L while SDC is the standardized sign statistics with null hypothesis of \non-
superiority" of SV-ALD-L over SV-ALD. * means signi�cance in the corresponding level.

additional penalty related to the opportunity cost of capital.13 We use a non-parametric sign

test to check the ability the relevant VaR models to minimize these loss functions.14

Table 25 presents the summary results for the RLF and FLF loss function approach as

applied to the models chosen in the VaR backtesting stage. The results in Panel A show that

the SV-N model achieves the smallest value of average loss more often than the SV-N-L model

while the outcome is not conclusive for the SV-ALD model and the SV-ALD-L model under

the two approaches. To examine the statistical signi�cance of the losses, we report the values

of the standardized sign test in Panel B. Considering the RLF criterion, this test shows that

the competing models (leverage vs no-leverage models) are not signi�cantly di�erent from

13This criterion penalizes large failures more than small failures (See Sarma et al., 2003).
14For the sign test see Lehmann (1974), Diebold and Mariano (1995), Hollander and Wolfe (1999) and

Sarma et al. (2003).
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Table 26 shows the summary results of RLF and FLF loss function approach applied to

the models chosen in the CVaR backtesting stage. In terms of the average economic losses

and considering both RLF and FLF as selection criteria, the SV-N model performs relatively

better than the SV-N-L model in the WTI market while in the Brent market, the SV-N-L

model outperforms the SV-N model. The standardized sign test values by FLF in the Panel

B indicate that in most cases there are no signi�cant di�erences between the competitors.

The only exception is that the SV-N-L model outperforms the SV-N model for oil supply in

the Brent market at 1.96% risk level and the SV-ALD model performs better for oil demand

in the WTI market at 0.37%

8. Conclusions

In this paper, we study the interaction between oil returns and volatility by using daily

spot returns in the crude oil markets (both WTI and Brent) with a particular consideration

for the impact of the leverage e�ect on measures of risk such as VaR and CVaR. We �nd

that, allowing for leverage, traditional SV models with Normal distributed errors provide the

best predictions in our out of sample experiments.

In order to address the risk faced by oil suppliers and oil consumers we model spot crude

oil returns using Stochastic Volatility (SV) models with various error distributions. Among

other cases, we test the assumption of Asymmetric Laplace Distributed (ALD) errors in order

to model in a more distinctive way the type of risk faced by oil suppliers versus the risk faced

by oil buyers.

We �nd that the introduction of the leverage e�ect in the traditional SV model with

Normally distributed errors is capable of adequately estimating risk (in a VaR and CVaR

sense) for conservative (i.e. more risk averse, with � = 5%) oil suppliers in both the WTI

and Brent markets while it tends= 5%�.84377(oil)-37621(l1liers9 Td1-362(t260lat0SV397-40on-25371(ption)60las(Asetric)-26d)-279(6d)(p)-2(6d)1(er)]TJ 09478astri(6d)in)-26d
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A. Asymmetric Laplace distribution

A random variable X is said to follow an Asymmetric Laplace Distribution if the

characteristic function of X can be de�ned as:

 (t) =
1

1 + 1
2
�2t2 � i�t

(16)

where i is the imaginary unit, t 2 R is the argument of the characteristic function, � is the

scale parameter with � > 0 and � is the mean of X. Then, we have X � AL(�; �). Note

that this characteristic function is a standardized form with location parameter � = 0. An

equivalent notation for the distribution of X can be written as AL(�; �). More details can

refer to Kotz et al. (2001).

The density function is given by:
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and further the CVaR for oil supply:

CV aRs;t =� E [ytjyt � �V aRs;t] = V aRs;t +
��tp

2
(19)

For oil demand, we have:
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D. Derivation of scaled ALD as an SMU

This part demonstrates the derivation of SALD as a scale mixture of fU("tj�� ��2�tp
1+�4 ; �+

��tp
1+�4 ) and fGa(�j2; 1):
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Z 1
0
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Consider two cases for random variable "t where (1): "t > � � ��2�tp
1+�4 or equivalently

� > �
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Since �
p

1+�4("t��)
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> 0, thus we have "t < �, which follows:
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As a result, it is demonstrated that the scaled Asymmetric Laplace density function of random

variable "t:
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can be replaced by an SMU distribution given by:
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� For latent variables ht, we have:
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