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Abstract

Over two dozen different terms for identification appear in the econometrics literature,
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framework unifying existing definitions of point identification, 2. summarizes and compares
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in identification between structural models and causal, reduced form models.
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1 Introduction

Econometric identification really means just one thing: model parameters or features being uniquely deter-

mined from the observable population that generates the data.1 Yet well over two dozen different terms for

identification now appear in the econometrics literature. The goal of this survey is to summarize (identify)

and categorize this zooful of different terms associated with identification. This includes providing a new,

more general definition of identification that unifies and encompasses previously existing definitions.

This survey then discusses the differences between identification in traditional structural models vs.

the so-called reduced form (or causal inference, or treatment effects, or program evaluation) literature.

Other topics include set vs. point identification, limited forms of identification such as local and generic

identification, and identification concepts that relate to statistical inference, such as weak identification,

irregular identification, and identification at infinity. Concepts that are closely related to identification,

including normalizations, coherence, and completeness are also discussed.

The mathematics in this survey is kept relatively simple, with a little more formality provided in the

Appendix. Each section can be read largely independently of the others, with only a handful of concepts

carried over from one section of the zoo to the next.

The many terms for identification that appear in the econometrics literature include (in alphabeti-

cal order): Bayesian identification, causal identification, essential identification, eventual identification,

exact identification, first order identification, frequentist identification, generic identification, global iden-

tification, identification arrangement, identification at infinity, identification by construction, identifica-

tion of bounds, ill-posed identification, irregular identification, local identification, nearly-weak identi-

fication, nonparametric identification, non-robust identification, nonstandard weak identification, overi-

dentification, parametric identification, partial identification, point identification, sampling identification,

semiparametric identification, semi-strong identification, set identification, strong identification, structural

identification, thin-set identification, underidentification, and weak identification. This survey gives the

1The first two sections of this survey use identification in the traditional sense of what would now be more precisely called

"point identification." See section 3 for details.
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meaning of each, and shows how they relate to each other.

Let � denote an unknown parameter, or a set of unknown parameters (vectors and/or functions) that we

would like to learn about, and ideally, estimate. Examples of what � could include are objects like regressor

coefficients, or average treatment effects, or error distributions. Identification deals with characterizing

what could potentially or conceivably be learned about parameters � from observable data. Roughly,

identification asks, if we knew the population that data are drawn from, would � be known? And if not,

what could be learned about �?

The study of identification logically precedes estimation, inference, and testing. For � to be identified,

alternative values of � must imply different distributions of the observable data (see, e.g., Matzkin 2013).

This implies that if � is not identified, then we cannot hope to find a consistent estimator for � . More

generally, identification failures complicate statistical analyses of models, so recognizing lack of iden-

tification, and searching for restrictions that suffice to attain identification, are fundamentally important

problems in econometric modeling.

The next section, Section 2, begins by providing some historical background. The basic notion of

identification (uniquely recovering model parameters from the observable population), is now known as

"point identification." Section 3 summarizes the basic idea of point identification. A few somewhat dif-

ferent characterizations of point identification appear in the literature, varying in what is assumed to be

observable and in the nature of the parameters to be identified. In Section 3 (and in an Appendix), this

survey proposes a new definition of point identification (and of related concepts like structures and ob-

servational equivalence) that encompasses these alternative characterizations or classes of point identified

models that currently appear in the literature.

Section 3 then provides examples of, and methods for obtaining, point identification. This section





need the notion of "ceteris paribus," that is, holding other things equal. The formal application of this

concept to economic analysis is generally attributed to Alfred Marshall (1890). However, Persky (1990)

points out that usage of the term ceteris paribus in an economic context goes back to William Petty (1662).2

The textbook example of an identification problem in economics, that of separating supply and demand

curves, appears to have been first recognized by Philip Wright (1915), who pointed out that what appeared

to be an upward sloping demand curve for pig iron was actually a supply curve, traced out by a moving

demand curve. Philip’s son, Sewall, invented the use of causal path diagrams in statistics.





A different identification problem is that of identifying the true coefficient in a linear regression when

regressors are measured with error. Robert J. Adcock (1877, 1878), and Charles H. Kummell (1879)

considered measurement errors in a Deming regression, as popularized in W. Edwards Deming (1943)5.

This is a regression that minimizes the sum of squares of errors measured perpendicular to the fitted line.

Corrado Gini (1921) gave an example of an estimator that deals with measurement errors in standard

linear regression, but Ragnar A. K. Frisch (1934) was the first to discuss the issue in a way that would now

be recognized as identification. Other early papers looking at measurement errors in regression include

Neyman (1937), Wald (1940), Koopmans (1937), Reiersøl (1945, 1950), Roy C. Geary (1948), and James

Durbin (1954). Tamer (2010) credits Frisch (1934) as also being the first in the literature to describe an

example of set identification.

3 Point Identification

In modern terminology, the standard notion of identification is formally called point identification. De-

pending on context, point identification may also be called global identification or frequentist identifica-

tion. When one simply says that a parameter or a function is identified, what is usually meant is that it is

point identified.

Early formal definitions of (point) identification were provided by Koopmans and Reiersøl (1950),

Hurwicz (1950), Fisher (1966) and Rothenberg (1971). These include the related concepts of a structure

and of observational equivalence. See Chesher (2008) for additional historical details on these classical

identification concepts.

In this survey I provide a new general definition of identification. This generalization maintains the

intuition of existing classical definitions while encompassing a larger class of models than previous def-

initions. The discussion in the text below will be somewhat informal for ease of reading. More rigorous

definitions are given in the Appendix.

5Adcock’s publications give his name as R. J. Adcock. I only have circumstantial evidence that his name was actually

Robert.
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3.1 Introduction to Point Identification

Recall that � is the parameter (which could include vectors and functions) that we want to identify and

ultimately estimate. We start by assuming there is some information, call it �, that we either already

know or could learn from data. Think of � as everything that could be learned about the population that

data are drawn from. Usually, � would either be a distribution function, or some features of distributions

like conditional means, quantiles, autocovariances, or regression coefficients. In short, � is what would

be knowable from unlimited amounts of whatever type of data we have. The key difference between the

definition of identification given in this survey and previous definitions in the literature is that previous

definitions generally started with a particular assumption (sometimes only implicit) of what constitutes �

(examples are the Wright-Cowles identification and Distribution Based identification discussed in Section

3.3).

Assume also that we have a model, which typically imposes some restrictions on the possible values

� could take on. A simple definition of (point) identification is then that a parameter � is point identified

if, given the model, � is uniquely determined from �.

For example, suppose for scalars Y , X , and � , our model is that Y D X� C e where E
�
X2
�
6D 0 and

E .eX/ D 0, and suppose that �, what we can learn from data, includes the second moments of the vector

.Y; X/. Then we can conclude that � is point identified, because it is uniquely determined in the usual

linear regression way by � D E .XY / =E
�
X2
�
, which is a function of second moments of .Y; X/.

Another example is to let the model be that a binary treatment indicator X is assigned to individuals

by a coin flip, and Y is each individual’s outcome. Suppose we can observe realizations of .X; Y / that are

independent across individuals. We might therefore assume that �, what we can learn from data, includes

E .Y j X/. It then follows that the average treatment effect � is identified because, when treatment is

randomly assigned, � D E .Y j X D 1/ � E .Y j X D 0/, that is, the difference between the mean of Y

among people who have X D 1 (the treated) and the mean of Y among people who have X D 0 (the

untreated).

Both of the above examples assume that expectations of observed variables are knowable, and so can
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regarding the collection of data, e.g., selection, measurement errors, and survey attrition. The other is as-

sumptions regarding the generation of data, e.g., randomization or statistical and behavioral assumptions.

Arellano (2003) refers to a set of behavioral assumptions that suffice for identification as an identification

arrangement. Ultimately, both types of assumptions determine what we know about the model and the

DGP, and hence determine what identification is possible.

3.2 Defining Point Identification

Here we define point identification and some related terms, including structure and observational equiv-

alence. The definitions provided here generalize and encompass most previous definitions provided in

the literature. The framework here most closely corresponds to Matzkin (2007, 2012). Her framework is

essentially the special case of the definitions provided here in which � is a distribution function. In con-

trast, the traditional textbook discussion of identification of linear supply and demand curves corresponds

to the special case where � is a set of limiting values of linear regression coefficients. The relationship

of the definitions provided here to other definitions in the literature, such as those given by the Cowles

foundation work, or in Rothenberg (1971), Sargan (1983), Hsiao (1983), or Newey and McFadden (1994),

are discussed below. In this section, the provided definitions will still be somewhat informal, stressing the

underlying ideas and intuition. More formal and detailed definitions are provided in the Appendix.

Define a model M to be a set of functions or constants that satisfy some given restrictions. Examples of

what might be included in a model are regression functions, error distribution functions, utility functions,

game payoff matrices, and coefficient vectors. Examples of restrictions could include assuming regression

functions are linear or monotonic or differentiable, or that errors are normal or fat tailed, or that parameters

are bounded.

Define a model value m to be one particular possible value of the functions or constants that comprise

M . Each m implies a particular DGP (data generating process). An exception is incoherent models (see

Section 4), which may have model values that do not correspond to any possible DGP.

Define � to be a set of constants and/or functions about the DGP that we assume are known, or
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knowable from data. Common examples of � might be data distribution functions, conditional mean

functions, linear regression coefficients, or time series autocovariances.

Define a set of parameters � to be a set of unknown constants and/or functions that characterize or

summarize relevant features of a model. Essentially, � can be anything we might want to estimate. Para-

meters � could include what we usually think of as model parameters, such as regression coefficients, but

� could also be, e.g., the sign of an elasticity, or an average treatment effect.

The set of parameters � may also include nuisance parameters, which are defined as parameters that

are not of direct economic interest, but may be required for identification and estimation of other objects

that are of interest. For example, in a linear regression model � might include not only the regression

coefficients, but also the marginal distribution function of identically distributed errors. Depending on

context, this distribution might not be of direct interest and would then be considered a nuisance parameter.

It is not necessary that nuisance parameters, if present, be included in � , but they could be.

We assume that each particular value of m implies a particular value of � and of � (violations of this

assumption can lead to incoherence or incompleteness, as discussed in a later section). However, there

could be many values of m that imply the same � or the same � . Define the structure s .�; �/ to be the set

of all model values m that yield both the given values of � and of � .

Two parameter values � ande� are defined to be observationally equivalent if there exists a � such that

both s .�; �/ and s
�
�;e�� are not empty. Roughly, � ande� observationally equivalent means there exists a

value � such that, if � is true, then either the value � ore� could also be true. Equivalently, � ande� being

observationally equivalent means that there exists a � and model values m and em such that model value m

yields the values � and � , and model value em yields the values � ande� .

We’re now ready to define identification. The parameter � is defined to be point identified (often

just called identified) if there do not exist any pairs of possible values � and e� that are different but

observationally equivalent.

Let 2 denote the set of all possible values that the model says � could be. One of these values is the

unknown true value of � , which we denote as �0. We say that the particular value �0 is point identified
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if �0 not observationally equivalent to any other � in 2. However, we don’t know which of the possible

values of � (that is, which of the elements of 2) is the true �0. This is why, to ensure point identification,

we generally require that no two elements � ande� in the set2 having � 6De� be observationally equivalent.

Sometimes this condition is called global identification rather than point identification, to explicitly say

that �0 is point identified no matter what value in 2 turns out to be �0.

We have now defined what it means to have parameters � be point identified. We say that the model

is point identified when no pairs of model values m and em in M are observationally equivalent (treating

m and em as if they were parameters). Since every model value is associated with at most one value of � ,

having the model be identified is sufficient, but stronger than necessary, to also have any possible set of

parameters � be identified.

The economist or econometrician defines the model M , so we could in theory enumerate every m 2 M ,

list every value of � and � that is implied by each m, and thereby check every pair s .�; �/ and s
�
�;e�� to

see if � is point identified or not. The difficulty of proving identification in practice is in finding tractable

ways to accomplish this enumeration. Note that since we do not know which value of � is the true one,

proving identification in practice requires showing that the definition holds for any possible � , not just the

true value.

We conclude this section by defining some identification concepts closely related to point identifica-

tion. Later sections will explore these identification concepts in more detail.

The concepts of local and  [(.)25hone,
for ill values� 6D �0 ne t(is)-215neighborhood,f � is not observationally equivalent to�0



those that are observationally equivalent to some other element of 2, and those that are not. If �0 is in the

second group, then it’s identified, otherwise it’s not. Since �0 could be any value in2, and we don’t know



� .

How does this example fit the general definition of identification? Here each value of � is a partic-

ular continuous, monotonically increasing distribution function F . In this example, each model value

m happens to correspond to a unique value of �, because each possible distribution of W has a unique

distribution function. In this example, for any given candidate value of � and � , the structure s .�; �/ is

either an empty set or it has one element. For a given value of � and � , if � D F and F .�/ D 1=2 (the

definition of a median) then set s .�; �/ contains one element. That element m is the distribution that has

distribution function F . Otherwise, if � D F where F .�/ 6D 1=2, the set s .�; �/ is empty. In this exam-

ple, it’s not possible to have two different parameter values � ande� be observationally equivalent, because

F .�/ D 1=2 and F
�e�� D 1=2 implies � D e� for any continuous, monotonically increasing function F .

Therefore � is point identified, because its true value �0 cannot be observationally equivalent to any other

value � .

Example 2: Linear regression. Consider a DGP consisting of observations of Y; X where Y is a

scalar, X is a K�vector. The observations of Y and X might not be independent or identically distributed.

Assume the first and second moments of X and Y are constant across observations, and let � be the set of

first and second moments of X and Y . Let the model M be the set of joint distributions of e; X that satisfy

Y D X 0�Ce, where �



define � and � . For example, suppose we had IID observations of Y; X . We could then have defined �

to be the joint distribution function of Y; X , and defined � to include both the coefficients of X and the

distribution function of the error term e. Given the same model M , including the restriction that E
�
X X 0

�
is nonsingular, we would then have semiparametric identification of � .

Example 3: treatment. Suppose the DGP consists of individuals who are assigned a treatment of

T D 0 or T D 1, and each individual generates an observed outcome Y . Assume Y; T are independent

across individuals. In the Rubin (1974) causal notation, define the random variable Y .t/ to be the outcome

an individual would have generated if he or she were assigned T D t . The observed Y satisfies Y D Y .T /.

Let the parameter of interest � be the average treatment effect (ATE), defined by � D E .Y .1/� Y .0//.

The model M is the set of all possible joint distributions of Y .1/, Y .0/, and T . One possible restriction

on the model is Rosenbaum and Rubin’s (1983) assumption that .Y .1/ ; Y .0// is independent of T . This

assumption, equivalent to random assignment of treatment, is what Rubin (1990) calls unconfoundedness.

Imposing unconfoundedness means that M only contains model values m (i.e., joint distributions) where

.Y .1/ ; Y .0// is independent of T .

The knowable function � from this DGP is the joint distribution of Y and T . Given unconfound-

edness, � is identified because unconfoundedness implies that � D E .Y j T D 1/ � E .Y j T D 0/,

which is uniquely determined from �. Heckman, Ichimura, and Todd (1998) note that a weaker suf-

ficient condition for identification of � by this formula is the mean unconfoundedness assumption that

E .Y .t/ j T / D E .Y .t//. If we had not assumed some form of unconfoundedness, then � might not

equal E .Y j T D 1/ � E .Y j T D 0/. More relevantly for identification, without unconfoundedness,

there could exist different joint distributions of Y .1/, Y .0/, and T (i.e., different model values m) that

yield the same joint distribution �, but have different values for � . Those different values would then be

observationally equivalent to each other, and so we would not have point identification.

The key point for identification is not whether we can write a closed form expression like E .Y j T D 1/�

E .Y j T D 0/ for � , but whether there exists a unique value of � corresponding to every possible �.

These constructions can all be generalized to 0.00(ut).9552 T]TJ/Fr 7.iTd [o0/, and



generally be defined as the assumption that .Y .1/ ; Y .0// is independent of T conditional on a set of

observed covariates X . This also corresponds to Heckman and Robb’s (1985) selection on observables

assumption. In this case identification requires an additional condition, called the overlap condition,

which says that for every value x that X can take on, we can observe individuals who have T D 1

and X D x , and other individuals who have T D 0 and X D x . This implies that we can identify both

E .Y j T D 1; X D x/ and E .Y j T D 1; X D x/, and the average treatment effect � is then identified by

� D E .E .Y j T D 1; X/� E .Y j T D 0; X//, where the outer expectation is over all the values that X

can take on.

Example 4: linear supply and demand. Consider the textbook example of linear supply and demand

curves. Assume we have, for each time period, a demand equation Y D bXCcZCU and a supply equation

Y D aX C ", where Y is quantity, X is price, Z is income, and U and " are mean zero errors, independent

of Z . Each model value m could consist of a particular joint distribution of Z , U , and " in every time

period. Note that these distributions could change over time. Different values of coefficients a, b, and c,

and different distributions of Z , U , and " for all time periods correspond to different model values m. The

model M is the set of all possible model values m that satisfy the assumptions. Here � could be defined

as the vector
�
�1; �2

�
of reduced form coefficients Y D �1 Z C V1 and X D �2 Z C V2 where V1 and V2

are mean zero, independent of Z . Suppose � D a, meaning that what we want to identify is the coefficient

of price in the supply equation. Solving for the reduced form coefficients we have that �1 D ac= .a � b/

and �2 D c= .a � b/.

In this example, what model values m comprise a given structure s .�; �/? Along with distributions,

each m includes a particular value of a, b, and c. So the model values m that are in a given structure

s .�; �/ are the ones that satisfy the equations � D a, �1 D ac= .a � b/, and �2 D c= .a � b/. Note in

particular that, if c 6D 0, then �1=�2 D a, so s .�; �/ is empty if c 6D 0 and �1=�2 6D � . Whenever s .�; �/

is not empty, it contains many elements m, because there are many different possible distributions of Z ,

U , and " for the given value of � and � .

Without additional assumptions, � is not identified in this example. This is because any two values
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� ande� will be observationally equivalent when � D .0; 0/. The more familiar way of saying the same

thing is that, for identification of the supply equation, we need the instrument Z to appear in the demand

equation, and therefore we need c 6D 0, which implies that �2 6D 0. If we include in the definition of the

model that c 6D 0, then � is identified.

Example 5: latent error distribution. Suppose the DGP is IID observations of scalar random vari-

ables Y; X , so � is the joint distribution of Y; X . The model M is the set of joint distributions of X;U

satisfying the restrictions that X is continuously distributed, U ? X (meaning U is independent of X ),

and that Y



regression coefficients. These could, e.g., be the probability limits of regression coefficients estimated

using time series, cross section, or panel data.

Many identification arguments in econometrics begin with one of three cases: Either � is a set of

reduced form regression coefficients, or � is a data distribution, or � is the maximizer of some function.

These starting points are sufficiently common that they deserve names, so I will call these classes Wright-

Cowles identification, distribution based identification, and extremum based identification.

Wright-Cowles Identification: The notion of identification most closely associated with the Cowles

foundation concerns the simultaneity of linear systems of equations like supply and demand equations.

This is the same problem considered earlier by Philip and Sewall Wright, as discussed in the previous

section, so call this concept Wright-Cowles identification. Let Y be a vector of endogenous variables,

and let X be a vector of exogenous variables (regressors and instruments). Define � to be a matrix of

population reduced form linear regression coefficients, that is, � denotes a possible value of the set of



here because there could be more than one reduced form matrix value that is consistent with the true �0.

For example, if �0 is just the coefficient of price in the supply equation, there could be many possible

reduced form coefficient matrices �, corresponding to different possible values of all the other coefficients

in the structural model.

A convenient feature of Wright-Cowles identification is that it can be applied to time series, panel, or

other DGP’s with dependence across observations, as long as the reduced form linear regression coeffi-

cients have some well defined limiting value �.

Identification of linear models can sometimes be attained by combining exclusions or other restrictions

on the matrix of structural coefficients with restrictions on the covariance matrix of the errors. In this

case we could expand the definition of � to include both the matrix of reduced form coefficients and the

covariance matrix of the reduced form error terms, conditional on covariates. Now we’re assuming more

information (specifically, the error covariance matrix) is knowable, and so the structure s can now include

restrictions not just on coefficients, but also on error covariances. More generally the structure could have

all kinds of restrictions on the first and second moments of Y given X . In models like these, identification

is sometimes possible even without instruments of the type provided by exclusion restrictions. Examples

include the LISREL model of Jöreskog (1970) and the heteroskedasticity based identification of Lewbel

(2012, 2018).

Distribution Based Identification: Distribution based identification is equivalent to the general defi-

nition of identification given by Matzkin (200703 Td6s



metric restrictions on the knowable distribution function, like continuity or existence of moments. Distri-

bution based identification is suitable for IID data, where � would be knowable by the Glivenko-Cantelli

theorem, or may apply to some non-IID DGP’s where the distribution is sufficiently parameterized.

Here � could be parameters of a parameterized distribution function, or features of the distribution �

like moments or quantiles, including possibly functions like conditional moments. Alternatively, � could

consist of constants or functions describing some behavioral or treatment model that is assumed to generate

data drawn from the distribution �. The structure s .�; �/ will be an empty set if the given distribution

function � doesn’t have the features or parameter values � . Two vectors � and e� are observationally

equivalent if there’s a distribution function � that can imply values � ore� . So � is point identified if it’s



density or mass function of Wi , then this could be a maximum likelihood estimator. Now define G by

G .� / D E .g .Wi ; � //. More generally, G .� / could be the probability limit of the objective function of

a given extremum estimator. The parameter � is point identified if, for every value of G allowed by the

model, there’s only a single value of � that corresponds to any of the values of � that maximize G .� /.

Suppose G is, as above, the probability limit of the objective function of a given extremum estimator.

A standard assumption for proving consistency of extremum estimators is to assume G .� / has a unique

maximum � 0, and that �0 equals a known function of (or subset of) � 0. See, e.g., Section 2 of Newey and

McFadden (1994). This is a sufficient condition for extremum based identification.

For linear models, Wright-Cowles identification can generally be rewritten as an example of, or a

special case of, extremum based identification, by defining G to be an appropriate least squares objective

function. In parametric models, distribution based identification can also often be recast as extremum

based identification, by defining the objective function G to be a likelihood function.

Extremum based identification can be particularly convenient for contexts like time series or panel

data models, where the distribution of data may change with every observation, or for social interactions

models where there is complicated dependence across observations. When the DGP is complicated, it









be known, and then ask whether there exists a unique value of vectors or functions � that satisfy the

restrictions defined by the structure s .�; �/. Some results in economics do take this form, for example,

the revealed preference theory of Samuelson (1938, 1948), Houthakker (1950), and Mas-Colell (1978)

provides conditions under which indifference curves � are point identified from demand functions �. Here

the model is the set of restrictions on demand functions (e.g., homogeneity and Slutsky symmetry) that

arise from maximization of a regular utility function under a linear budget constraint. This identification

theorem makes no direct reference to data, though it is empirically relevant because we believe we can

estimate (and hence can identify) demand functions from observable data.

This example illustrates the sense mentioned earlier in which definitions of identification are some-

what circular or recursive. We start by assuming that a set of vectors or functions � are ’knowable,’

which essentially means we assume � is identified. Then given the assumed identification of �, we de-

fine identification of a set of other parameters � . Equivalently, identification of parameters � can only be

proven conditional on already knowing that something else, �, is identified. For example, the Samuelson,

Houthakker, and Mas-Colell theorems say that, given revealed preference assumptions, if demand func-

tions � are identified, then indifference curves � are identified. A separate question would then be when

or whether demand functions themselves can be identified.

3.5 Common Reasons for Failure of Point identification

Parameters � often fail to be point identified for one of six somewhat overlapping reasons: model incom-

pleteness, perfect collinearity, nonlinearity, simultaneity, endogeneity, or unobservability.

Incompleteness arises in models where the relationships among variables are not fully specified. An

example is games having multiple equilibria, where the equilibrium selection rule is not known or speci-

fied. Incompleteness can also arise in structures characterized at least in part by inequality constraints. It

is sometimes possible for parameters to be point identified in incomplete models, but often incompleteness

causes, or at least contributes to, failure of identification. Incompleteness is discussed further in Section 4.

Perfect collinearity is the familiar problem in linear regression that one cannot separately identify
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Randomization is a useful source of identification, primarily because it prevents simultaneity. It can’t

be the case that Y and X are determined jointly if X is determined by a random process that is independent

of Y .

Endogeneity is the general problem of regressors being correlated with errors. Simultaneity is one

source of endogeneity, but endogeneity can arise in other ways as well. Sampling issues such as mea-

surement errors and selection can cause endogeneity. Even when a regressor X is determined by a coin

flip, if some people are not observed, or are observed with error, in ways that correlate with X , then we

could end up having an endogeneity problem. Endogeneity can also arise when errors that correspond to

unobserved covariates may correlate with observables, just as observables often correlate with each other.

For example, the error in a production function may correspond to an unobserved factor of production

such as entrepreneurship, and may therefore correlate with other factors of production. Or the error in a

wage equation may correspond to an individual’s ability or drive, and so correlate with other factors that

determine wages, like education. In the causal diagrams literature, colliders are endogenous covariates.

The last common source of nonidentification is unobservability. Many models contain unobserved

heterogeneity, which typically take the form of nonadditive or nonseparable error terms. Examples are

unobserved random utility parameters in consumer demand models, unobserved state variables in dynamic

optimization models, and unobserved production efficiency as in stochastic frontier models. The causal

or reduced form literature is often concerned with unobservable counterfactuals, e.g., what an untreated

individual’s outcome would have been had they been treated. In structural models, many of the concepts

we would like to estimate, such as an individual’s utility level, are unobservable.

Still other concepts may in theory be observable, but are difficult to measure, and so in practice are





reduced form, causal analysis like LATE or difference-in-difference.6

The second, more important reason is that Z itself could be endogenous, and the problems resulting

from adding an endogenous Z regressor to the model could be worse than the confounding issue. For

example, consider a regression of wages Y on a gender dummy X and other covariates to uncover a







Historically, identification by functional form assumed completely parameterized models with no un-

known functions. However, that is often much stronger than needed for identification. For example,

suppose, as in the previous supply and demand example, we have demand given by Y D bX C cZ C U

where X



a and b are identified without any instruments or other outside information as long as either some error

or the true X is not normal. So the standard assumption of normality turns out to be the worst possible

functional form for identification with measurement error. Lewbel (1997b) shows that, in this model, if

the measurement error is symmetrically distributed and the true X



functional form restrictions can be used to test validity of a potential "true" instrument. For example, in

the linear model Y D a C bX C cZ C U , where Z is exogenous, we may have some outside variable W

that we think is a valid instrument for X . We could estimate the model by two stage least squares, using

a constant, W , Z , and Lewbel’s (2012) heteroskedasticity based constructed variable R defined above as

instruments. With both W and R as instruments for X , the model is overidentified (see the next section for

details on ove-ridentification), so one can test jointly for validity of all the instruments, using e.g., a Sargan

(1958) and Hansen (1982) J-test. If validity is rejected, then either the model is misspecified or at least one

of these instruments is invalid. If validity is not rejected, it is still possible that the model is wrong or the

instruments are invalid, but one would at least have increased confidence in both the outside instrumentRXand X



der conditions arising from extremum estimators, such as the score functions associated with maximum

likelihood estimation.

Suppose the model consists mainly of a set of equalities like these. We then say that parameters

� are exactly identified if removing any one these equalities causes � to no longer be point identified.

The parameters are overidentified when � can still be point identified after removing one or more of the

equalities, and they are underidentified when we do not have enough equalities to point identify � .

If � is a J�vector, then it will typically take J equations of the form E
�
g .W; �/

�
D 0 to exactly

identify � . Having the number of equations equal or exceed the number of unknowns is called the order

condition



4 Coherence, Completeness, and Reduced Forms

Although often ignored in practice, consideration of coherence and completeness of models should log-

ically precede the study of identification. Indeed, most proofs of point identification either implicitly or

explicitly assume the model has a unique reduced form, and therefore (as discussed below) assume both

coherence and completeness. For example, the models considered in Matzkin’s (2005, 2007, 2012) iden-

tification surveys are coherent and complete. In contrast, incompleteness often results in parameters being

set identified but not point identified.

Let Y be a vector of endogenous variables, and let V be a set of observables and unobservables that

determine Y . Here V could contain unknown parameters, exogenous observed covariates and error terms.

Let�v and�y be the sets of all values that V and Y can take on, respectively. Consider a proposed model

M of the form Y D H.Y; V /. By saying this equation is the model M , what is meant that each model

value m 2 M implies a DGP in which V and Y satisfy this equation.

This model is defined to be coherent if for each v 2 �v there exists a y 2 �y that satisfies the equation

y D H.y; v/. The model is defined to be complete if for each v 2 �v there exists at most one value of

y 2 �y that satisfies the equation y D H.y; v/. A reduced form of the model is defined as a function

(or mapping) G such that y D G.v/, so a reduced form expresses the models’ endogenous variables Y in

terms of V . Having both coherence and completeness means that for each v 2 �v there exists a unique

y 2 �y that satisfies y D H.y; v/. Having a model be both coherent and complete therefore guarantees

the existence of a unique reduced form y D G.v/ for the model, because then G can be uniquely defined

by G.v/ D H .G .v/ ; v/.

This definition of completeness and coherence is used by Tamer (2003). Completeness as defined here

is an extension of the concept of statistical completeness. Statistical completeness is discussed in Newey

and Powell (2003) for identification of nonparametric IV models, and in parametric models is associated

with sufficient statistics. Gourieroux, Laffont, and Monfort (1980) defined a model to be coherent if, in

Tamer’s terminology, the model is both coherent and complete. Heckman (1978) referred to this combi-

nation of both coherence and completeness as the "principal assumption" and as "conditions for existence
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of the model."

Incoherent or incomplete models arise in some simultaneous games, e.g., based on Tamer (2003),

the industry entry game discussed by Bresnahan and Reiss (1991) can be incoherent if the game has no

Nash equilibrium, or incomplete if there are multiple equilibria. Aradillas-Lopez (2010) removes the

incompleteness in these games by showing how a unique Nash equilibrium exists when players each

possess some private information.

Entry games are an example of a system of equations involving discrete endogenous variables. More

generally, issues of incoherency and incompleteness can readily arise in simultaneous systems of equations

involving limited dependent variables. Examples are analyzed by Blundell and Smith (1994), Dagenais

(1997), and Lewbel (2007a). To illustrate, consider the simple model

Y1 D I .Y2 CU1 � 0/

Y2 D �Y1 CU2

where � is a coefficient, U1 and U2 are unobserved error terms, V D .�;U1;U2/, Y D .Y1; Y2/, and I is

the indicator function that equals one if its argument is true and zero otherwise. These equations could for

example be the reaction functions of two players in some game, where player one makes a binary choice

Y1 (such as whether to enter a market or not), and player two makes some continuous decision Y2 (such as

the quantity to produce of a good).

It is not obvious that this simple model could suffer from incoherence or incompleteness, and so a

researcher who is not familar with these issues could easily make the mistake of attempting to estimate

this model by standard methods (e.g., maximum likelihood assuming U1 and U2 are normal).

Subtstituting the second equation into the first gives Y1 D I .�Y1CU1CU2 � 0/. Using this equation

one can readily check that if �� � U1 C U2 < 0 then both Y1 D 0 and Y1 D 1 satisfy the model, and

therefore the model is incomplete if the errors can satisfy this inequality. Also, if 0 � U1 C U2 < ��

then neither Y1 D 0 nor Y1 D 1 will satisfy the model, making the model incoherent. This model is both

coherent and complete if and only if � D 0 or U1 CU2 is constrained to not lie between zero and �� .

The above system of equations is simultaneous, in that Y1 is a function of Y2 and Y2 is a function
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of Y1. A pair of equations is said to be triangular if either Y1 is a function of Y2 or Y2 is a function of

Y1, but not both. For example, the model above is triangular if � D 0 (since in that case Y2 depends

on Y1, but not vice versa), and in that case the model is also coherent and complete. In fact, if U1 and

U2 can take on any value (e.g., if they were normal), then the model is coherent and complete only if



needs to be changed, while a finding of incompleteness means that the model may need to be completed.

Determining an equilibrium selection rule is an example of completing a model that is otherwise incom-

plete due to having multiple equilibria.

Even without changing or completing the model, parameters of incoherent or incomplete models can

sometimes be point identified and estimated. See Tamer (2003) for examples. However, incomplete

models usually have parameters that are set rather than point identified, as in Manski and Tamer (2002).

This is because, when multiple values of Y can correspond to each V , it will often be the case that the

different values of Y will correspond to different values of � .

Incompleteness or incoherency can arise in models with multiple decision makers, such as strategically

interacting players in a game. Models of a single optimizing agent will typically be coherent though

sometimes incomplete, such as when the same utility or profit level can be attained in more than one way.

Incoherency or incompleteness can also arise in such models when the decision making process is either

incorrectly or incompletely specified, or is not characterized by optimizing behavior. Equilibrium selection

mechanisms or rules for tie breaking in optimization models can be interpreted as techniques for resolving

incompleteness. Another common source of incompleteness is behavioral restrictions on structures that

take the form of inequality rather than equality constraints, yielding multiple possible values of Y for the

same V .

5 Causal Reduced Form vs. Structural Model Identification

Among economists doing empirical work, recent years have seen a rapid rise in the application of so-called

reduced form or causal inference methods, usually based on randomization. This so-called "credibility

revolution," as exemplified by, e.g., Angrist and Pischke (2008), Levitt and List (2009), and Banerjee and

Duflo (2009), arose in economics long after the standard theory of identification was developed in the

context of structural modeling. As a result, most surveys of identification in econometrics, such as Hsiao

(1983) or Matzkin (2007, 2012), do not touch on identification as it is used in this literature.

Proponents of these methods often refer to their approach as a reduced form methodology. Other

41



commonly used terms for these methods include causal modeling, causal inference, treatment effects

modeling, program evaluation, or mostly harmless econometrics.7

To distinguish them from structural model based methods, I will simply refer to these types of analyses

as causal, or causal reduced form methods. Two key characteristics of causal methods are 1. A focus

on identification and estimation of treatment effects rather than deep parameters, 2. An emphasis on

natural or experimental randomization (rather than restrictions on how treatment may affect outcomes) as

a key source of identification. However, many exceptions to these characterizations exist. For example,

numerous structural analyses, like the famous Roy (1951) model, also seek to identify treatment effects.

Some reduced form methods, like difference in difference estimation (see section 3.6), are not based on

random assignment. Some literatures, such as Pearl (2000, 2009), focus on using minimal structural type

assumptions (like causal diagrams) to aid in identifying causal effects. And a growing number of empirical

structural analyses make use of data obtained from randomized control trial (RCT) experiments.

Despite these many exceptions, causal methods generally focus on identification and estimation of

treatment effects based on random assignment, either of treatment itself from a RCT, or of some variable

that correlates with treatment (i.e., a randomly assigned instrument). In the causal literature, instruments

are defined as variables that one can plausibly argue are randomly determined, and that correlate with

treatments of interest. A large part of the causal literature is devoted to designing and interpreting RCTs.

These are particularly popular in, e.g., development economics. Much of the rest of the causal literature

entails searching for and exploiting instruments (as from natural experiments) for identification.

Causal methods largely forego attempts to identify so-called structural or deep parameters, that is,

parameters of models based on equations representing the behavior of various economic agents (such

parameters are assumed to be unaffected by the treatment). Instead, causal analyses focus on identifying

treatment effects. These are the average (across the population or across some subpopulation) of the

7Terms like reduced form modeling or causal modeling are potentially confusing, since "reduced form" has a specific mean-

ing discussed earlier in the structural modeling context, and structural methods are also often employed to identify causal or

treatment effects. Mostly Harmless Econometrics is the title of Angrist and Pischke’s (2008) book promoting these approaches.

The name is in turn based on a satirical science fiction novel, that humorously also features the phrase, "infinite improbability."
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1. Causal analyses based on randomization can be augmented with structural econometric methods to

deal with identification problems caused by data issues such as attrition, sample selection, measurement

error, and contamination bias. For example, Conlon and Mortimer (2016) use a field experiment to esti-

mate the causal effects of temporarily removing a popular brand from vending machines. They combine

observed experimental outcomes with a simple structural model of purchase timing, to deal with the fact

that purchase outcomes are only observed when the machines are serviced.

2. It is not just reduced form methods that require instrument independence. Identification in struc-

tural models also often depends on independence assumptions, and the use of randomization can increase

confidence that required structural assumptions are satisfied. In short, good reduced form instruments are

generally also good structural model instruments. An example is Ahlfeldt, Redding, Sturm, and Wolf

(2015), which uses a natural experiment (the partition of Berlin) to identify a structural model of the

economic gains associated with people living and working near each other in cities.8

3. Identifiable causal effects can provide useful benchmarks for structural models. For example,

suppose we have a structural model with parameters that are identified by assumed behavioral restrictions.

One might estimate these behavioral model parameters using data from large surveys, and then check

whether treatment effects implied by the estimated structural parameters equal treatment effects that are

identified and estimated using small randomized trial data sets drawn from the same underlying population.

Another example is Andrews, Gentzkow and Shapiro (2017, 2018), who construct summary statistics

based on the estimated joint distribution of reduced form parameters (like the moments used to estimate

LATE) and structural model parameters. They use these statistics to assess the extent to which structural

results depend on intuitively transparent identifying information.

4. Economic theory and structure can provide guidance regarding the external validity of causal pa-

rameters. For example, in a causal analysis one can’t say how even a small change in treatment policy

would change the resulting effects of treatment. Weak structural assumptions can overcome this limita-

8In awarding this paper the 2018 Frisch Medal, the Econometric Society’s medal committee wrote that this paper, "provides

an outstanding example of how to credibly and transparently use a quasi-experimental approach to structurally estimate model

parameters."
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tion. For example, in regression discontinuity designs the cutoff, i.e., the threshold discontinuity point,

is often a relevant policy variable (such as the grade at which one qualifies for a scholarship). Dong and

Lewbel (2015) show that, with a mild structural assumption called local policy invariance, one can identify

how treatment effects estimated by regression discontinuity designs would change if the threshold were

raised or lowered, even when no such change in the threshold is observed. Their estimator also provides

a direct measure of the stability of regression discontinuity treatment effects (see Cerulli, Dong, Lewbel,

and Poulsen 2017). Frölich and Huber (2017) use structural assumptions regarding a second instrument

to separate direct from indirect effects of treatment on outcomes. Yet another example is Rosenzweig and

Udry (2016), who use structure to model how average treatment effects (returns from policy interventions)

estimated from randomized control trials, vary with macro shocks such as weather.

5. One can use causal methods to link randomized treatments to observable variables, and use struc-

ture to relate these observables to more policy relevant treatments and outcomes. For example, it has been

documented that middle aged and older women in India have much higher mortality rates than would be

expected, based on household income levels and the mortality rates of their spouses. Calvi (2016) uses a

causal analysis to link changes in women’s household bargaining power (stemming from a change in inher-

itance laws) to their health outcomes. One might then speculate that this established causal link between

household power and health could explain the excess mortality rates of older women. But such specula-

tion is nothing more or less than crude structural modeling. Instead of speculating, Calvi then constructs

estimates of women’s relative poverty rates based on structural models of their bargaining power, as de-

fined by their consumption and control of household resources. She finds that these structurally estimated

relative poverty rates can explain more than 90% of the women’s higher than expected observed mortality

rates by age. Most causal analyses include informal speculation regarding the wider implications of es-

timated treatment effects. More convincing than such informal discussions is formally establishing those

connections and correlations with the rigor imposed by structural model identification and estimation.

Another, related example is Calvi, Lewbel, and Tommasi (2017). This paper estimates a LATE where

treatment is defined as women’s control over most resources within a household, and as above the out-
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comes are family health measures, and the instrument is changes in inheritance laws. However, in this case

the relevant treatment indicator cannot be directly observed, and so is estimated using a structural model of

household behavior. Since structural models can be misspecified and have estimation errors, the estimated

treatment indicator will be mismeasured for some households. The paper therefore proposes and applies

an alternative estimator, called MR-LATE (mismeasurement robust LATE), that accounts for the potential

measurement errors in observed treatment that may arise from misspecification or estimation errors in the

structural model. In this example, the use of structure allows the application of LATE to identify a more

policy relevant treatment effect than would otherwise be possible.

6. Big data analyses on large data sets can uncover promising correlations. Structural analyses of

such data could then be used to uncover possible economic and behavioral mechanisms that underlie these

correlations, while randomization might be used to verify the causal direction of these correlations. It

is sometimes claimed that machine learning, natural experiments, and randomized controlled trials are

replacing structural economic modeling. This is, if anything, backwards: as machine learning and ex-

periments uncover ever more previously unknown correlations and connections, the desire to understand

these newfound relationships will rise, leading to an increase, not a decrease, in the demand for structural

economic theory and models.

7. Structural type assumptions can be used to clarify when and how causal effects may be identified.

Examples are the structural causal models and causal diagrams, like directed acyclic graphs, summarized

in Pearl (2000, 2009) and the more accessible Pearl and Mackenzie (2018). Another line of research that

formally unifies structural and randomization based approaches to causal modeling is Vytlacil (2002),

Heckman, Urzua and Vytlacil (2006), Heckman and Vytlacil (2007), and Heckman (2008, 2010).

5.2 Randomized Causal vs. Structural Identification: An Example

An obstacle to comparing causal vs. structural analyses is that these methods are usually described using

different notations. So, to facilitate the comparison, a causal model’s assumptions will here be rewritten

completely in terms of the corresponding restrictions on a structural model, and vice versa. Both models
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will be described in both notations.

Let Y be an observed outcome, let T be a binary endogenous regressor (think of T as indicating

whether one receives a treatment or not), and let Z be a binary variable that is correlated with T , which

we will use as an instrument. Assume � includes the first and second moments of .Y; T; Z/. In practice

the DGP is such that these moments can be consistently estimated by sample averages.

The example structural model considered here will be the linear regression model Y D aC bT C e for

some error term e and constants a and b, under the standard instrumental variables identifying assumption

that E .eZ/ D 0. The corresponding causal model will be the local average treatment effect (LATE)

model of Imbens and Angrist (1994). The key difference between these specific models is that, in the

structural model, any heterogeneity of the impact of T on Y is assumed to be included in the error term

e and hence is assumed to be uncorrelated with Z . This is a behavioral assumption, since it restricts

the distribution of responses to treatment (i.e., behavior) in the population. The LATE model drops this

behavioral restriction, replacing it with a randomized Z and a "no defiers" assumption (defined later), and

instead identifies the average effect of T on Y for a subpopulation called compliers. While comparison of

these models is not new (see, e.g., Imbens and Angrist 1994, Angrist, Imbens, and Rubin 1996, Imbens

and Rubin 1997, Vytlacil 2002 and Heckman 1997, 2008, 2010), the goal here is to use the models to

illustrate differences between identification in a popular structural and a popular causal model, both in

terms of their assumptions and their notation.

What makes one model or analysis structural and another causal? As discussed earlier, structural

models are generally assumed to have fixed deep or policy invariant parameters (like the coefficient b) and

identifying restrictions (like E .eZ/ D 0) that together summarize and place assumed limits on behavior.

In short, structural models are generally models of economic behavior, ideally derived from and identified

by economic theory.

In contrast, while it is impossible to avoid making some assumptions regarding behavior, causal models

attempt to make as few such assumptions as possible. Causal models instead usually exploit randomiza-

tion as the primary source of parameter identification (though some models that don’t involve explicit
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(1978). 10 Notwithstanding this long history, reduced form causal analyses often start with the counter-

factual notation of Rubin (1974). In this notation, Y .t/ is defined as the random variable denoting the

outcome Y that would occur if the treatment T equals t . Since Y D U0 CU1T , it follows that Y .0/ D U0

(since that’s what you get if you set T D 0) and Y .1/ D U0 C U1. So both Y .1/ and Y .0/ are random

variables. Note that observed Y satisfies Y D Y .T /.

In the same way, T .z/ denotes the random variable describing what one’s treatment T would be if

Z D z, so T .0/ D V0 and T .1/ D V0 C V1. Note that since T and Z are both binary, we can without loss

of generality say that V0 and V0 C V1 are binary, that is, both V0 and V0 C V1 can only equal zero or one.

Consistent with the above structural random coefficients model, this potential outcome notation as-

sumes that Z V V D z V V. t /



or SUTVA, which is the assumption any one person’s outcome is unaffected by the treatment that other

people receive. The term SUTVA was coined by Rubin (1980), but the concept goes back at least to Cox

(1958), and indeed may be implicit in Splawa-Neyman (1923), Neyman, Iwaszkiewicz, and Kolodziejczyk

(1935), and Fisher (1935). SUTVA is a strong behavioral assumption that essentially rules out social

interactions, peer effects, network effects, and many kinds of general equilibrium effects. Although a

goal of causal modeling is to make as few behavioral assumptions as possible, the behavioral SUTVA

assumption is generally accepted in this literature, in part because it can be enforced in many purely

experimental settings (by, e.g., physically separating experimental subjects until the experiment is over).

In contrast to laboratory settings, many natural or field experiments may (despite randomization) still

violate SUTVA, due to the effects of people interacting with each other, either directly or via markets.

When SUTVA is violated, most causal inference estimators become invalid, and point identification of

causal effects becomes far more difficult to obtain. When SUTVA is violated one must typically make

behavioral assumptions (i.e., the types of assumptions more commonly associated with structural models)

to gain point identification, or construct more complicated experiments aimed at identifying the magnitude

of spillover effects of some people’s treatments to other’s outcomes, or settle for set identification of causal

effects. See Manski (2013), Lazzati (2015), Angelucci and Di Maro (2016), and Laffers and Mellace

(2016) for examples of dealing with SUTVA violations by each of these methods. See also Rosenbaum

(2007), who discusses inference when SUTVA is violated.

SUTVA can be interpreted as another type of exclusion restriction, in which Yi .0/ and Yi .1/, the

potential outcomes for any given person i , are assumed to be independent of T j for any other person j .

In the structural model, SUTVA corresponds to a restriction on the causal correlations of U1i ;U0i (the

outcome model random coefficients of person





structural instrument validity, i.e., cov .e; Z/ D 0, actually mean? Under the above assumption that Z is

independent of fU1;U0; V0; V1g, we have that cov .e; Z/ D cov .U1; V1/ var .Z/, so the instrument Z is

valid in the structural sense if cov .U1; V1/ D 0. Note from above that

c D
E .U1V1/

E .V1/
D

E .U1/ E .V1/C cov .U1; V1/

E .V1/
D E .U1/C

cov .U1; V1/

E .V1/

so the structural restriction cov .U1; V1/ D 0 makes c D b D E .U1/. What does this structural co-

efficient b correspond to in causal notation? Recall the average treatment effect (ATE) is defined by

E [Y .1/� Y .0/]. Now E [Y .t/] D E [.U0 CU1t/] D E .U0/ C E .U1/ t for t D 0 and for t D 1.

Therefore E [Y .1/� Y .0/] D E .U1/ D b. So the structural coefficient b is precisely the causal ATE.

To summarize, first, the structural instrument validity assumption that cov .e; Z/ D 0 is equivalent

to cov .U1; V1/ D 0. Second, under this assumption, the instrumental variables estimand c equals the

structural linear regression coefficient b, which in turn equals the ATE. Again it should be emphasized

that what has been provided here is just one possible set of structural modeling assumptions. For example,

under milder assumptions, Heckman (1997) interprets the structural instrumental variable’s regression

coefficient as the ATT (the average treatment effect on the treated).

Now consider a causal identification argument. Define compliers to be individuals for whom T and Z

are the same random variable, that is, a complier is an individual i who has Ti D z when Zi D z for z

being either zero or one. Similarly, let defiers denote people for whom T and 1� Z are the same random

variable. Recalling that T D V0 C V1 Z , anyone who has V1 D 1 must also have V0 D 0 (otherwise T

would equal two which is impossible). It follows that compliers are exactly the people who have V1 D 1.

Imbens and Angrist (1994) define the local average treatment effect (LATE) to be the average treatment

effect among compliers. In our notation, LATE is defined to equal E [Y .1/� Y .0/ j V1 D 1]. Note that

these authors use the word ’local’ in LATE to mean identification of the ATE for just a subset of people

(the compliers). This is quite different from how the word local was used in the previous identification

literature (see Section 6 below).

With these definitions in mind, consider again the equation for c. From the equation T D V0 C V1 Z ,

we noted that compliers are individuals who have V1 D 1, and these people must also have V0 D 0,
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structural and causal approaches require assumptions regarding unobservables (not just on V1 or U1, but

also assumptions like SUTVA), and a priori neither method’s identifying assumptions are more or less

plausible or restrictive than the other.

It is important to recall that these particular assumptions and models are not universal or required

features of causal vs. structural methods. For example, there exist structural analyses that don’t assume

cov .e; Z/ D 0 and identify, or partially identify, objects similar to LATE, and there exist causal treatment

effects that can be identified even if defiers are present. The point of this example is just to illustrate the

different types of assumptions, and associated estimands, that are typical in the two methodologies.

One way to interpret the difference in assumptions in this example is that the structural assumption

cov .e; Z/ D 0, which reduces to cov .U1; V1/ D 0, is a restriction on the heterogeneity of the treatment

effect U1. Essentially this restriction says that an individual’s type V1 (complier if V1 D 1, defier if V1 D

�1, always or never taker if V1 D 0) is on average unrelated to the magnitude of their personal treatment

effect U1. This is a behavioral restriction regarding the outcome Y (or more precisely on how treatment

affects Y ), and behavioral restrictions on how covariates can affect outcomes are typical structural type

assumptions.

In contrast, the causal assumption that nobody has V1 D �1 (no defiers) is a restriction on the hetero-

geneity of types of individuals. This is still a behavioral restriction, but it only restricts behavior regarding

the determination of treatment T relative to the instrument Z . This no defiers assumption does not restrict

how the outcome Y might depend on treatment. This illustrates a general feature of causal methods, which

is to assume as little as possible about how outcomes depend on treatment, preferring instead to make rel-

atively stronger assumptions regarding the determination of treatment. In short, causal methods generally

make fewer or weaker assumptions regarding the Y equation and stronger assumptions regarding the T

equation.

In the causal model, we pay a price for dropping restrictions on the outcome equation. First, we can’t

know precisely who the compliers are, because the definition of a complier involves unobservables (or,

equivalently, counterfactuals). The LATE is the average treatment effect for a subset of the population,
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but we don’t know who is in that subset, and we don’t know how treatment may affect anyone else.

This disadvantage is mitigated by the fact that we can estimate the probability that anyone is a complier,

as a function of their observable characteristics (see Angrist and Pischke 2008). Also, if Z is a policy

variable, then compliers might be a subpopulation of interest. One more mitigating factor is that, given an

instrument or other covariates, one can often calculate bounds on ATE (an example of set identification).

See, e.g., Manski (1990) and Balke and Pearl (1997).

On the other hand, treatment might be something individuals actively seek out, typically for reasons

that relate to the outcome. An example is the Roy (1951) model, where people choose a treatment (like

moving to a new location, accepting a job offer, or taking a drug) because of the outcome they expect from

that treatment. Anyone who chooses their own treatment in this way will generally not be a complier (since

compliers have treatment given by the randomly determined Z ). This is a reappearance of the point made

earlier that structure is needed to identify causal relationships in which treatment correlates with outcomes.

For more on this point see Heckman (2008), who illustrates limitations of reduced form estimators like

LATE in comparison to more general treatment effect models that allow for self selection. By focusing

on compliers, LATE essentially only looks at the subset of people for whom treatment was randomly

assigned. To the extent that compliers are not representative of the population as a whole, LATE may be

unreliable for policy analyses. Of course, a similar objection might be made to the structural interpretation

of c; it too could be unreliable for policy analyses if the population does not, at least approximately, satisfy

the assumed behavioral restrictions.

Another limitation of the reduced form methodology is how it extends to more general treatments.

When the treatment is many valued or even continuous, the number of types (compliers, deniers, etc.) that

one needs to define and restrict becomes large and complicated in the causal framework. In contrast, the

structural restriction cov .U1; V1/ D 0, or equivalently, cov .e; Z/ D 0, remains unchanged regardless of

how many values T or Z can take on.

A related limitation of LATE is that the definition of a complier depends on the definition of the instru-

ment Z . Suppose we saw a different instrument eZ instead of Z , and we letec D cov
�eZ ; Y

�
=cov

�eZ ; T
�
. If
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As before, let us again analyze the meaning of c D cov .Z ; Y / =cov .Z ; X/. For this simultaneous

system, the structural analysis is exactly the same as before: We can rewrite the Y equation as Y D

a C bX C e where b D E .U1/ and e D U0 C .U1 � b/ X . If the structural assumption cov .e; X/ D 0

holds then c D b and both equal E .U1/, the average marginal effect of X on Y .

In contrast, a causal analysis of this system is possible, but is much more complex. Angrist, Graddy

and Imbens (2000) provide conditions, similar to those required for LATE, under which c will equal a

complicated weighted average of conditional expectations of U1, with weights that depend on Z . And

even this limited result, unlike the simple structural restriction, requires X to be binary.

Another limitation of applying causal methods to simultaneous systems is that the counterfactual no-

tation itself rules out some types of structural models. For example, consider an incomplete model similar

to that of Section 4, where endogenous variables Y and X are determined by Y D I .X C U � 0/,

X D Y C Z C V , and �1 � U C Z C V < 0. As above, Y , X , and Z are observables and U and V

are unobserved error terms. This model could represent a game between two players, where the equations

are the reaction functions of one player who chooses Y and the other who chooses X . In this model,

reduced form equations for Y and X as functions of Z , U , and V do not exist. Even if you knew the joint

distribution of .Z ;U; V /, the probability distribution of potential outcomes Y .x/ would not be defined.

When we use the potential outcome notation, we assume that the potential outcomes Y .x/ are random

variables having well defined (albeit unknown) distributions. This structural model cannot be represented

by the potential outcome notation. Use of the potential outcome notation in this model imposes additional

assumptions or restrictions that are not part of the underlying structural model, like assuming the existence

of an equilibrium selection rule for the game. More generally, use of counterfactual notation in a model

implicitly assumes that reduced forms exist in that model (indeed, causal models are often called reduced

form models).

A final limitation in applying causal analyses to simultaneous systems is the SUTVA restriction dis-

cussed earlier. Many kinds of structural models involving simultaneous systems exist in which treatment

of one person may causally affect



cial interactions, network effects, and general equilibrium models. For example, the Progresa program in

Mexico (and its successor Oportunidades) is a widely cited example of randomized treatment assignment,

but people may choose to move to communities that have the program, or change behavior either from in-

teracting with treated individuals, or in expectation that the program will expand to their own community.

Behrman and Todd (1999) discuss these and other potential SUTVA violations associated with Progresa.

Similarly, macroeconomic treatments often either cannot be randomized, or would violate SUTVA if they

were. As noted earlier, some work does exist on causal model identification when SUTVA is violated, but

typically such models require behavioral, structural type assumptions for point identification of treatment

effects. See, e.g., Manski (2013).

As the above examples illustrate, in many settings involving interactions or simultaneous systems,

causal estimands can be difficult to identify or interpret without structural, behavioral type model restric-

tions. This may explain why causal inference is more popular in fields that traditionally focused on partial

equilibrium analyses (e.g., labor economics and micro development), but has made fewer inroads in fields

where general equilibrium models requiring simultaneous systems are the norm (e.g., industrial organiza-

tion and macroeconomics).

5.4 Randomized Causal vs. Structural Identification: Conclusions

This subsection provides a short summary of the relative advantages and disadvantages of causal vs. struc-

tural approaches to identification, though as noted earlier, best practice will often be to combine features

of both methodologies.

One great advantage of causal based methods is their long history of success in the hard sciences.





in the calibrated value of the rate of time preference (some other structural parameters, like the degree of

risk aversion, have less consensus). Most of these calibrated values are obtained from multiple structural

models, though some have been additionally investigated by laboratory and field experiments.

More generally, experience drawn from a variety of structural models has lead to a consensus among

economists regarding ranges of values for parameters, such as price and income elasticities, that are widely

recognized as reasonable. Empirical structural analyses have in addition revealed many behavioral rela-

tionships, going back at least to Engel’s (1857) law, that appear to hold up almost universally.

The main disadvantage of imposing behavioral restrictions for identification is that reality is compli-

cated, so every structural model we propose is likely to be oversimplified and hence misspecified. As Box





tures to identify parameter vectors and functions.

The third subsection below describes the role of normalizations in identification. Normalizations are

prominently used in the literature on nonparametric, semiparametric, and set identification, but are rarely

discussed. The fourth subsection below uses special regressors to provide examples of nonparametric,

semiparametric, and set identification, and the use of normalizations.

6.1 Nonparametric and Semiparametric Identification

In Section 3.2, we defined nonparametric identification as the case where � consists of functions or infinite

sets. As discussed earlier in Section 2.4, the Glivenko–Cantelli theorem proves that, with IID observations

of a vector W , the distribution function of W is consistently estimated by the empirical distribution func-

tion. It follows that the distribution function of W , F .W /, is nonparametrically identified by construction,

where the construction is to take the probability limit of the empirical distribution function. If W is contin-

uously distributed, then its probability density function f .W / is also nonparametrically identified, using

the construction f .W / D @F .W / =@W with F .W / identified. For another example, assume IID obser-

vations of continuous Y; X . Suppose we have the nonparametric regression model Y D m .X/ C e with

E .e j X/ D 0. Then m .X/ D E .Y j X/ as long as this expectation exists. The conditional expectation

function m .X/ can be constructed from the joint distribution of Y and X , which is itself identified, so we

have by construction that m .X/ is nonparametrically identified.

Recall that parametric identification was defined as the case where � is a finite set of constants, and

all the different possible values of � also correspond to different values of a finite set of constants. Identi-

fication that is neither parametric nor nonparametric is called semiparametric identification. For example,

given we have IID observations of random variables Y; X; Z , a partially linear model is defined as the

model Y D m .Z/C X 0�C e where m is an unknown function, �





is identification of the function m .X/ in the model Y D m .X/ C e, but instead of the nonparametric re-

gression assumption that E .e j X/ D 0, it is assumed that E .e j Z/ D 0 for some vector of instruments Z .

The parameter � to identify is the function m .X/, what is knowable, �, is F .Y; X j Z/ (the joint distribu-

tion of Y; X given Z ), and the restrictions that define the model are the equation E .e j Z/ D 0 along with

some regularity conditions. This equation can be written as
R

supp.Y;X jZDz/ .Y � m .X// d F .Y; X j z/ D 0

for all z 2 supp .Z/. We have identification if this integral equation can be uniquely solved for m .X/. So

here identification corresponds to uniqueness of the solution of an integral equation. Newey and Powell

(2003) show that identification here is equivalent to an example of statistical completeness.

In contrast, if Y; X , and Z were all discrete, then identification of � would be parametric identification.

In that case, the integral equation would reduce to a matrix equation, and identification would only require

simple nonsingularity of a moment matrix, as in linear instrumental variables regression models. When

identification of vectors of parameters depends on inverting nonsingular matrices, it is sometimes possible

to extend these same arguments to the identification of functions through the use of so-called operator

methods. These methods roughly correspond to inverting the integrals (like expectations of continuous

random variables) that express � in terms of � , in the same way that the sums (like expectations of discrete

random variables) may be solved for vectors � by matrix inversion. Schennach (2007) is a prominent

example, identifying a nonparametric regression function with a mismeasured regressor. In applications

of operator methods, concepts like completeness and injectivity are crucial to identification, as infinite

dimensional analogues to the invertibility of matrices.

More generally, econometric models often involve moments, which take the form of integrals. As a re-

sult models requiring nonparametric or semiparametric identification frequently require integral equations

to have unique solutions. The above nonparametric instrumental variables model is one example. Other





(1951) on recovering joint distributions from marginals, and Peterson (1976) on competing risks models.

Much of the systematic study of set identification is attributed to Manski (e.g., Manski 1990, 1995, 2003).

While not typically associated with the set identification literature, an early example of combining

theoretical restrictions with data to obtain inequalities and hence bounds on behavior are the revealed

preference inequalities derived by Afriat (1967) and Varian (1982, 1983).

Interest in set identification grew when methods for doing inference on estimators of set identified

parameters began to be developed, as in Manski and Tamer (2002). In addition to inference, much of the

modern literature on set identification deals with the derivation of sharp bounds, with verifying that one

has obtained the smallest possible identified set given the available information, and with finding situations

where the identified set is very small relative to 2.

One reason why parameters may be set rather than point identified is incompleteness of the underlying

model. It can be difficult to uniquely pin down parameters when more than one value of the endogenous

variables Y can be associated with any given value of covariates and errors. See Tamer (2003) and Manski

(2007) for examples. Set rather than point identification is also common when data are incompletely

observed, e.g., when regressors are censored, discretized, mismeasured, or observations are missing not

at random. See, e.g., Manski and Tamer (2002) and references therein. We also often get sets rather than

points when economic theory only provides inequalities rather than equalities on behavior, as in Pakes,

Porter, Ho, and Ishii (2015).

As noted earlier, parameters may fail to be point identified when they are at least partly defined in terms

of unobserved variables, such as counterfactuals in treatment effects models (see, e.g., Manski (1990)

and Balke and Pearl (1997)). Different parameter values may be associated with different values these

unobservables may take on, leading to set identification. Schennach (2014) provides a general technique

for deriving a collection of observable moments that implicitly characterize the identified set in models

that are defined by moments over both observables and unobservables.

Some proponents of set identification methods, such as Chesher and Rosen (2017), argue that economic

theory rarely provides enough restrictions to point identify model parameters of interest, resulting in a
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great deal of econometric literature devoted to complicated or poorly motivated tricks to obtain point

identification. They essentially argue that set identification should be treated as the usual situation. A

less extreme view is that we should first see what assumptions are needed to obtain point identification.

Then, examine what happens to the identified set when the strongest or least defensible point identifying

assumptions are dropped. For example, Lewbel (2012) uses a strong heteroskedasticity restriction to

obtain identification in models where ordinary instruments would usually be used for estimation, but

are unavailable. That paper includes construction of identified sets when this strong point identifying

restriction is relaxed.

Khan and Tamer (2010) define non-robust identification as the situation where an otherwise point

identified parameter loses even set identification when an identifying assumption is relaxed. For example,

suppose we wish to estimate � D E .Y �/ where the scalar random variable Y � can take on any value,

but what is knowable, � is the distribution of Y , defined by Y D I .�b � Y � � b/ Y � for some positive

constant b. For example, our DGP may consist of IID observations of Y , which is a censored version of

the true Y �. Here � is not point identified unless there’s no censoring, meaning b D 1. The identifying

assumption b D 1 is non-robust, because if it does not hold then, whatever the distribution of Y is, �

could take on any value. For example, even if Y has only a 1% chance of being larger than b, it could take

on an arbitrarily large value with that .01 probability, resulting in � being arbitrarily large. A non-robust

identifying assumption is one that is crucial in the sense that, without it, the data do not limit the range of

values � could take on.13

Set identification is an area of active research in econometric theory, but it is not yet frequently used

in empirical work. Perhaps the main obstacle to its application is that existing methods for estimation



estimators and inference is an ongoing area of research.

Modern econometrics is often criticized for being too complicated. This is a theme that appears in,

e.g., Angrist and Pischke (2008) and in Freedman (2005). The essence of these critiques is that model

complexity makes it difficult to discern or assess the plausibility of underlying identifying assumptions,

and too difficult to implement modern estimators. It is therefore perhaps ironic that removing compli-

cated identifying assumptions often leads to set rather than point identification of parameters, which then

typically requires even more rather than less mathematically complicated econometrics for identification,

estimation, and inference.

6.3 Normalizations in Identification

Nonparametric or semiparametric identification results often require so-called normalizations, but I do

not know of any previous survey that has reviewed the general issues associated with normalizations for

identification and estimation. To see what is meant by a normalization, consider the linear index model

E .Y j X/ D g
�
X 0�

�
, where g is some strictly monotonically increasing function and � is an unknown

vector. Many common econometric models are special cases of linear index models. For example, linear

regression is a linear index model where g is the identity function, and the binary probit model is a linear

index model where g is the cumulative standard normal distribution function. Binary logit models and

many censored and truncated regression models are also special cases of linear index models.

Assume � is the joint distribution of Y and X and E
�
X X 0

�
is nonsingular. If g is known (like the logit

or probit model), then � is point identified. The proof is by construction: � D
�
E
�
X X 0

���1
E
�
Xg�1 .E .Y j X//

�
.

Is � still point identified when the function g is unknown? In general, the answer is no. Intuitively,

one could double � and suitable redifine g, leaving g
�
X 0�

�
unchanged. so � and 2� are observationally

equivalent. Formally, Let � D fg; �g, so both the function g and the vector � are unknown. For any

given positive constant c, define e� D �=c, eg .z/ D g .cz/, and e� D feg; e�g. Then for any X we have

E .Y j X/ D g
�
X 0�

�
D eg �X 0e��, which shows that � and e� are observationally equivalent. So unless

our model contains some other information about g or �, the vector � is not identified. At best � might
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be set identified, where the identified set includes all vectors that are proportional to the true �. Suppose

that all of the elements of the identified set for � are proportional to the true �, so all have the form of

e� D �=c. Then we would say that �





given any e� we can define an observationally equivalent eg such that, eg .X Ce�/ D g .X C �/. As with

scale restrictions, location restrictions may or may not be free normalizations, depending on the use of the

model.

Consider a threshold crossing binary choice model, that is, Y D I
�
� C X 0� C e � 0

�
where e is an

unobserved error that is independent of X . This is a special case of the linear index model, since it implies

that E .Y j X/ D g
�
X 0�

�
where g is the distribution function of � .� C e/. Here identification requires

both a location and a scale normalization. In parametric models, these normalizations are usually imposed

on e. For example, the probit model is the special case of the threshold crossing binary choice model

where e has a standard normal distribution. This includes the restriction that e has mean zero and variance

one, which uniquely determines the location and scale of �C X 0�C e. We could instead have imposed the

location and scale restrictions that � D 0, � 0� D 1, and assumed that e has an arbitrary mean and variance.

Both ways of expressing the model are observationally equivalent.

Unlike parametric models, in semiparametric models it is more common to impose location and scale

normalizations on model parameters like � and � instead of on error distribution parameters like E .e/

and var .
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equivalent to saying that utility is ordinally but not cardinally identified, or that utility is identified up to an

arbitrary monotonic transformation, which we may call a normalization. Similarly, the threshold crossing

model Y D I
�
� C X 0� C e � 0

�
is observationally equivalent to Y D I

�
g
�
� C X 0� C e

�
� g .0/

�
where

g is any strictly monotonically increasing function. Without more information, we could therefore never

tell if one’s actual utility level were � C X 0� C e or g
�
� C X 0� C e

�
for any strictly monotonically

increasing function g. As before, whether choice of g corresponds to a free normalization or to a behavioral

restriction depends on context.

Some final notes on normalizations are these. First, parametric and semiparametric models often use

different normalizations. The location and scale normalizations on coefficients vs on error moments dis-

cussed above are an example. When comparing parametric and semiparametric estimates, one should

either recast �



is identified given �. Note that FU jZ .u j z/ is only identified for values of u that �X can equal.

This is an example of semiparametric identification of a function. The intuition behind this identi-

fication, which is the basis of special regressor estimation (see Lewbel 1997a, 2000, 2014), is that the

distribution of the unobserved latent error U can be identified because the model contains U C X for a

covariate X , and variation in X moves the dependent variable in the same way that variation in U does.

Let us now consider examples of models that exploit this idea.

Example: Set Identification of the Latent Mean. In this example we let Z be empty, and consider

identification of � D E .U /. Let us also assume that U can take on any value (its support is the whole real

line). We have from above that FU .u/ is identified, but only for value of u that are in the support of �X .

This means that if X has support on the whole real line, then FU .u/ is identified for all values of u, and

therefore we can identify E .U / D
R1
�1 ud FU .u/. This so-called large support assumption on X is needed

to identify E .U /, because calculating the mean of a random variable depends on the entire distribution

function of that variable. In contrast, other features of the distribution of U can be identified even if X has

very limited support. For example, if we wanted to identify the median rather than the mean of X , then

we would only require that the support of X includes the point x that makes E .Y j X D x/ D 1=2.

Suppose now that the support of X equals the interval [a; b] for some finite constants a and b. Then

FU .u/ is only identified for values of u in the range �b � u � �a. In this case, as noted by Khan and

Tamer (2010), E .U / is not even set identified, so identification of E .U / is non-robust. This is because

the distribution of U could have mass arbitrarily far below �b or arbitrarily far above �a allowing E .U /

to take on any value. On the other hand, if either a D �1 or b D 1, then we could place bounds on

E .U /, giving us set identification, and if both a D �1 and b D 1, then from above E .U / is point

identified. Point or set identification of E .U / is also possible when a and b are both bounded if we are

given some additional information about or restrictions on the tails of U . An example is that E .U / will be

point identified with bounded a and b if a condition Magnac and Maurin (2007) call tail symmetry holds.

Even mild restrictions on the tails of U , such as having the variance of U be finite, may suffice to yield at

least set identification of E .U / when a and b are bounded.
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Example: General Binary Choice. Suppose we continue to have IID observations of Y; X; Z with

Y D I .X CU > 0/ where U ? X j Z , but now in addition assume that U D g.Z/ C e with g.Z/ D

E .U j Z/, so Y D I .X C g.Z/C e > 0/. If g.Z/ were linear and e was normal, this would be a probit

model. Instead we have a very general binary choice model where the latent variable contains an unknown

function g



construction.

Example: Binary Choice With Random Coefficients. Before considering binary choice, consider

first the simpler linear random coefficients model. Suppose for the moment that we had IID observations

of continuous Ui and Zi , so the distribution function FU jZ is identified. Suppose further that U and Z

satisfy the linear random coefficients model U D Z 0e, where e is a vector of random coefficients having

an unknown distribution, and e is independent of the vector Z . Then it can be shown that, under some

standard conditions, the distribution of e is nonparametrically identified. See, e.g., Beran and Millar (1994)

or Beran, Feuerverger, and Hall (1996). The proof is based on the conditional characteristic function of

U given Z , but some intuition for why identification is possible can be obtained just by looking at simple

moments. From E .U j Z



regressors.

Identification theorems for binary choice models that predate special regressors, but which can be

reinterpreted as special cases of special regressor based identification methods, include Cosslett (1983),

Manski (1985), Horowitz (1992), and Lewbel (1997a). For more on the construction and use of special

regressors for identification, see Lewbel, Dong, and Yang (2012), Lewbel (2014), and Dong and Lewbel

(2015).

7 Limited Forms of Identification

For many models it is difficult or impossible to lay out conditions that formally ensure parameters are point

identified. One possible response to this problem is to use estimators that only require set identification,

though these are often difficult or intractable to apply. At the other extreme, one might simply ignore

the problem and just assume identification, though any resulting estimator could be poorly behaved. A

middle way is to establish conditions that make identification likely in some sense. Examples are local

identification and generic identification. These are conditions that are weaker than point identification, but

are often easier to prove. Given local or generic identification, it is then less of a leap of faith to assume

point identification holds.

7.1 Local and Global Identification

For a given true value of �0, recall that point identification of �0 means that there is no other � 2 2 (the

set of all possible values of � , according to the model) that is observationally equivalent to �0. Since the

true value of �0 is unknown, proving point identification requires that no distinct pairs of values � ande� in

2 be observationally equivalent to each other. As noted earlier, this condition is sometimes called global

identification, emphasizing how point identification must hold whatever the true value of �0 turns out to

be. A recent study that focuses on conditions for global identification is Komunjer (2012).

A necessary condition for global identification, and one that is often easier to verify in practice, is local
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observationally equivalent to any other value in that interval.

This example generalizes in some ways. For example, suppose in some model that 2 is an interval.

If � is set identified, and the set has a finite number of elements, then � is locally identified. Similarly,

consider an extremum identification problem where the objective function is complicated. In such cases

it may be difficult to rule out the possibility of a finite number of local optima, in which case one might

show local but not necessarily global identification. More generally, in nonlinear models it is often easier

to provide conditions that ensure local rather than global identification.

Local identification may be sufficient in practice if we have enough economic intuition about the

estimand to know that the correct � should lie in a particular region. Lewbel (2012) gives an example of a

model with a parameter and associated estimator that is set identified. The parameter is a coefficient in a

simultaneous system of equations, and the identified set has two elements, one positive and one negative.

So in this case we only have local identification, but if economic theory is sufficient to tell us the sign of



For parametric models that can (if identified) be estimated by maximum likelihood, this first order

condition is equivalent to the condition that the information matrix evaluated at the true � be nonsingu-

lar. Newey and McFadden (1994) and Chernozhukov, Imbens, and Newey (2007) give semiparametric

extensions of the Sargan rank result. Chen, Chernozhukov, Lee, and Newey (2014) provide a general rank

condition for local identification of a finite parameter vector in models defined by conditional moment

restrictions. Chen and Santos (2015) provide a concept of local overidentification that can be applied to a

large class of semiparametric models.

7.2 Generic Identification

Like local identification, generic identification is a weaker condition than point identification, is a neces-

sary condition for point identification, and is often easier to prove than point identification. Also like local

identification, one may be more comfortable assuming point identification for estimation purposes, if one

can show that at least generic identification holds.

Let e2 be a subset of 2, defined as follows: Consider every � 2 2. If � is observationally equivalent

to any othere� 2 2, then include � in e2. This construction means that if �0 takes on a value that is in e2
then �0 is not point identified, otherwise �0 is point identified. Proving point identification for any value

�0 might take on requires that e2 be empty. Following McManus (1992), the parameter � is defined to be

generically identified if e2 is a measure zero subset of 2.

To interpret what generic identification means, imagine that nature chooses a value �0 by randomly

picking an element of 2. Assume all elements of 2

inx 0 9122 52  [(2)]TJall



nonsingular. If we drew J 2 random numbers from some continuous distribution and put them in a matrix,

the probability that the matrix would be singular is zero, so in this example the order condition implies

generic identification of the model. Similarly, the coefficients in a linear regression model Y D X 0� C e

with E .e j X/ D 0 are generically identified if the probability is zero that nature chooses a distribution

function for X with the property that E
�
X X 0

�
is singular.

Another example is the regression model with measurement error. Assume the DGP is IID observations

of Y; X . Suppose the model is X D X� CU and Y D X�� C e, where the unobserved model error e, the

unobserved measurement error U , and the unobserved true covariate X� are all mutually independent with

mean zero. An early result in the identification literature is Reiersøl (1950), who showed that in this model,

despite not having instruments, the coefficient � is identified when .Y; X/ has any joint distribution except

a bivariate normal. We could then say that � is generically identified if the set of possible joint distributions

that Y; X might be drawn from is sufficiently large, as would be true if, e.g., e could have been drawn

from any continuous distribution. Similarly, Schennach and Hu (2013) show that under the same mutual

independence of e, U , and X�, the function m in the nonparametric regression model Y D m .X�/ C e is

nonparametrically identified as long as m and the distribution of e are not members of a certain parametric

class of functions. So again one could claim that mutual independence of e, U , and X� leads to generic

identification of m, as long as m could have been any smooth function or if e could have been drawn from

any smooth distribution.

Generic identification is sometimes seen in social interactions models. In many such models, showing

point identification is intractable, but one can establish generic identification. See, e.g., Blume, Brock,

Durlauf, and Ioannides (2011).

The term generic identification is sometimes used more informally, to describe situations in which

identification holds except in special or pathological cases, but where it might be difficult to explicitly

describe all such cases. An example is the generic identification results in Chiappori and Ekeland (2009).

These formal and informal definitions of generic identification coincide if we can interpret the special or

pathological situations as arising with probability zero.
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(1984). Bound, Jaeger, and Baker (1995) specifically raised the issue of weak instruments in an empirical

context. An early paper dealing with the problem econometrically is Staiger and Stock (1997). A survey

of the weak instruments problem is Stock, Wright, and Yogo (2002).

The usual source of weak identification is low correlations among variables used to attain identification.

A typical example is when the correlation between an instrument Z and the covariate X it is instrumenting

is close to zero. Associated parameters would not be identified if the correlation was actually zero, and so

identification is weak (usually stated as saying the instrument Z is weak) when this correlation is close to

zero. Given a vector of regressors X and a vector of instruments Z in a linear regression model, the first

stage of two stage least squares is to regress X on Z to get fitted values bX , and some or all of the model

coefficients may be weakly identified if the matrix E
�bX X 0

�
is ill conditioned, i.e., close to singular. More

generally, in a GMM model weak identification may occur if the moments used for estimation yield noisy

or generally uninformative estimates of the underlying parameters.

The key feature of weakly identified parameters is not that they are imprecisely estimated with large

standard errors (though they do typically have that feature). Rather, weakly identified parameters have the

property that standard asymptotic theory provides a poor approximation to the true precision of estimation.

Moreover, higher order asymptotics don’t help, since they too depend on precise parameter estimates. In

contrast, strongly identified parameters are defined as parameters for which standard estimated asymptotic

distributions provide good approximations to their actual finite sample distributions.

Nonparametric regressions are also typically imprecisely estimated, with slower than parametric con-

vergence rates and associated large standard errors. But nonparametric regressions are not said to be

weakly identified, because standard asymptotic theory adequately approximates the true precision with

which those parameters are estimated. Similarly, parameters that suffer from irregular or thin set identifi-

cation, such as those based on identification at infinity, are also not called weakly identified, since standard

asymptotic theory, again at slower than parametric rates, can still typically be applied.

To illustrate, consider a parameter vector that is identified, and could be estimated at parametric rates

using an extremum estimator (one that maximizes an objective function) like least squares or GMM or
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maximum likelihood. Elements of this parameter vector will be weakly identified if any objective func-

tion we might use for estimation is relatively flat in one or more directions involving those parameters.

This flatness of the objective function leads to imprecision in estimation. But more relevantly, flatness

also means that standard errors and t-statistics calculated in the usual ways (either analytically or by boot-

strapping) will be poorly estimated, because they depend on the inverse of a matrix of derivatives of the

objective function, and that matrix will be close to singular.

Weak identification resembles multicollinearity, which in a linear regression would correspond to

E
�
X X 0

�
instead of E

�bX X 0
�

being ill-conditioned. Like multicollinearity, it is not the case that a pa-

rameter either "is or "is not" weakly identified. Rather, relative weakness of identification depends on

the sample size. A model that suffers from multicollinearity when the sample size is n D 100 may be

fine when n D 1000. Similarly, A parameter that is weakly identified (meaning that standard asymptotics

provide a poor finite sample approximation to the actual distribution of the estimator) when n D 100 may

be strongly identified when n D 1000. This is why weakness of identification is generally judged by

rules of thumb rather than formal tests. For example, Staiger and Stock (1997) suggest the rule of thumb

for linear two stage least squares models that instruments are potentially weak if the F-statistic on the

excluded regressors in the first stage of two stage least squares is less than 10. See also Inoue and Rossi

(2011) for who provide a test for (extremum based) strong identification, where alternatives include weak

identification and a lack of extremum based point identification.

It is important to make a distinction between parameters that are weakly identified, and the models

that econometricians use to deal with weak identification. In real data, weak identification is purely a

finite sample problem that disappears when n gets sufficiently large. This makes it difficult to provide

asymptotic theory to deal with the problem. Econometricians have therefore devised a trick, i.e., an

alternative asymptotic theory, to provide better approximations to true finite sample distributions than are

obtained with standard asymptotics.

To understand this trick, consider the simple two equation system Y D �X C U and X D �Z C V

where the DGP consists of IID observations of the mean zero random scalars Y; X; and Z , while U
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and V are unobserved mean zero errors that are uncorrelated with Z . In this case, as long as � 6D 0,

the parameter � is identified by � D E .ZY / =E .Z X/. A corresponding estimator would replace these

expectations with sample averages, yielding the standard linear instrumental variables estimator. However,

since E .Z X/ D �E
�
Z2
�
, if � is close to zero then E .Z X/ will be close to zero, making � weakly

identified. But how close is close? Small errors in the estimation of E .Z X/ will yield large errors in the

estimate of � . The bigger the sample size, the more accurately E .Z X/ can be estimated, and hence the

closer � can be to zero without causing trouble.

To capture this idea asymptotically, econometricians pretend that the true value of � is not a constant,

but instead takes a value that drifts closer to zero as the sample size grows. That is, we imagine that the

true model is X D �n Z C Ux , where �n D bn�1=2 for some constant b. The larger n gets, the smaller

the coefficient �n becomes. This gives us a model where � suffers from the weak identification problem

at all sample sizes, and so can be analyzed using asymptotic methods. Typically, in a drifting parameter

model like this, the constant b and hence the parameter �n is not identified, so tests and confidence regions

for � have been developed that are robust to weak instruments, that is, they do not depend on consistent

estimation of �n . See, e.g., Andrews, Moreira, and Stock (2006) for an overview of such methods.

In the econometrics literature, saying that a parameter �



(2015), and references therein. These refer to models where parameters, or their impact on � , drift to zero

at rates other than n�1=2, or more generally where the model may contain a mix of drifting, nondrifting,

and purely unidentified parameters.

One final note is that weak instruments are often discussed in the context of models that also have

many instruments. However, the econometric difficulties associated with many instruments are distinct

from those associated with weak instruments, and some separate theory exists for dealing with many

instruments, weak instruments, or the combination of the two.

8.2 Identification at Infinity or Zero; Irregular and Thin set identification

Based on Chamberlain (1986) and Heckman (1990), identification at infinity refers to the situation in

which identification is based only on the joint distribution of data at points where one or more variables

go to infinity. For example, suppose our DGP is IID observations of scalar random variables Y; D; Z .

Assume Y D Y �D where D is a binary variable equal to zero or one, Y � is a latent unobserved variable

that is independent of Z , and limz!1 E .D j Z D z/ D 1. The goal is identification and estimation of

� D E .Y �/. This is a selection model, where Y is selected (observed) only when D D 1. For example D

could be a treatment indicator, Y � is the outcome if one is treated, � is what the average outcome would

equal if everyone in the population were treated, and Z is an observed variable (an instrument) that affects

the probability of treatment, with the probability of treatment going to one as Z goes to infinity. Here � is

identified by � D limz!1 E .Y j Z D z/. The problem is that Y � and D may be correlated, so looking at

the unconditional mean of Y confounds the two. But everyone who has Z equal to infinity is treated, so

looking at the mean of Y just among people having arbitrarily large values of Z eliminates the problem. In

real data we would estimate � byb� D Pn
iD1w .n; Zi / Yi=

�Pn
iD n

i



mators based on such identification will typically converge slowly (slower than parametric root n rates).

The same estimation problems can also arise whenever identification is based on Z taking on a value or

range of values that has probability zero. Khan and Tamer (2010) call this general idea thin set identifi-

cation. For example, Manski’s (1985) maximum score estimator for binary choice models is based on the

assumption that the conditional median of a latent error equals zero. This assumption is another example

of thin set identification, because it gets identifying power only from information at a single point (the

median) of a continuously distributed variable.

Khan and Tamer (2010) and Graham and Powell (2012) use the term irregular identification to describe

cases where thin set identification leads to slower than root-n rates of estimation. Not all parameters that

are thin set identified or identified at infinity are irregular. For example, estimates of � D E .Y �/ above can

converge at parametric rates if Z has a strictly positive probability of equaling infinity. More subtly, the

’impossibility’ theorems of both Chamberlain and Khan and Tamer showing that some thin set identified

models cannot converge at rate root n assume that the variables in the DGP have finite variances. So, e.g.,

Lewbel’s (2000) binary choice special regressor estimator with endogenous regressors is thin set identified.

But this estimator can converge at rate root n, avoiding irregular identification and overcoming Khan and

Tamer’s impossibility theorem, either by having a special regressor with strictly larger support than the

model’s latent index, or by having a special regressor with infinite variance. Similarly, Khan and Tamer

point out that the average treatment effect model of Hahn (1998) and Hirano, Imbens and Ridder (2003)

is also generally irregularly identified, and so will not attain the parametric root n rates derived by those

authors unless a latent index has extremely thick tails, just as Lewbel (2000) requires a special regressor

with thick tails (or larger support than the latent variable) to avoid being irregular.

It is easy to confuse irregular identification with weak identification, but they are not the same. Both

types of parameters are point identified by the usual definitions, and both refer to properties of the un-

derlying data and model that cause problems with estimation and inference regardless of the choice of

estimator.

The difference is that asymptotic theory for weakly identified parameters is based on models where true
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However, if g is discontinuous, thenb� will generally not be consistent. This discontinuity is the problem

of ill-posedness.14 Ill-posedness is an identification concept like weak identification or identification at

infinity, because it is a feature of the underlying model, � , and �.

When identification is ill-posed, construction of a consistent estimator requires "regularization," that

is, some way to smooth out the discontinuity in g. However, regularization generally introduces bias, and

obtaining consistency then requires some method of shrinking this bias as the sample size grows. This in

turn generally results in slower convergence rates.

Nonparametric estimation of a probability density function is an example of an ill-posedness problem.

Consider estimation of the density function f .w/, defined by f .w/ D d F .w/ =dw. There does not

generally exist a continuous g such that f D g .F/. Correspondingly, one cannot just take a derivative

of the empirical distribution function bF .w/ with respect to w to estimate f .w/. This problem is ill-

posed, and so regularization is needed to consistently estimate f . The standard Rosenblatt-Parzen kernel



Other common situations in econometrics where ill-posedness arises are in models containing mismea-

sured variables where the measurement error distribution needs to be estimated, and in random coefficient

models where the distribution of the random coefficients is unknown. Although the term "Ill-Posed Identi-

fication" does not actually appear in the literature (that name is therefore being proposed here), the general

problem of ill-posedness in econometrics is well recognized. See, e.g., Horowitz (2014) for a survey. The

concept of well-posedness, the opposite of ill-posedness, is originally due to Hadamard (1923).

8.4 Bayesian and Essential Identification

We have already seen that the usual notion of identification can be called point identification or global

identification. Two more names for the same concept that appear in the literature are frequentist identifi-

cation and sampling identification. These terms are used to contrast the role of identification in frequentist

statistics from its role in Bayesian statistics. In a Bayesian model, a parameter � is a random variable

rather than a constant, having both a prior and a posterior distribution. There is a sense in which point

identification is irrelevant for Bayesian models, since one can specify a prior distribution for � , and obtain

a posterior distribution, regardless of whether � is point identified or not. See Lindley (1971) and Poirer

(1998) for examples and discussions of the implications for Bayes estimation when parameters are not

point identified.

Still, there are notions of identification that are relevant for Bayesians. Gustafson (2005) defines para-





Unlike statistical inference, there is not a large body of general tools or techniques that exist for prov-

ing identification. As a result, identification proofs are often highly model specific and idiosyncratic.

Some general techniques for obtaining or proving identification in a variety of settings do exist. These

include control function methods as generalized in Blundell and Powell (2004), special regressors as in

Lewbel (2000), contraction mappings to obtain unique fixed points as applied in the Berry, Levinsohn, and

Pakes (1995) model, classes of integral equations corresponding to moment conditions that have unique

solutions, such as completeness as applied by Newey and Powell (2003), the observational equivalence

characterization theorem of Matzkin (2005), and the moments characterization theorem of Schennach

(2014). Development of more such general techniques and principles would be a valuable area for future

research.

Finally, one might draw a connection between identification and big data. Varian (2014) says, "In

this period of “big data,” it seems strange to focus on sampling uncertainty, which tends to be small with

large datasets, while completely ignoring model uncertainty, which may be quite large." In big data, the

observed sample is so large that it can be treated as if it were the population. Identification deals precisely

with what can be learned about the relationships among variables given the population, i.e., given big data.

A valuable area for future research would be to explore more fully the potential linkages between methods

used to establish identification and techniques used to analyze big data.

This paper has considered over two dozen different identification related concepts, as listed in the

introduction. Given the increasing recognition of its importance in econometrics, the identification zoo is

likely to keep expanding.

10 Appendix: Point Identification Details

This Appendix presents the definition of point identification and related concepts with somewhat more

mathematical rigor and detail than in Section 3. These derivations are very similar to those of Matzkin

(2007, 2012), though Matzkin only considers the case in which � is a data distribution function.

Define a model M to be a set of functions or sets that satisfy some given restrictions. These could
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model value m0 must satisfy �0 D 5.m0/. If more than one value of m 2 M satisfies �0 D 5.m/, then

we cannot tell which of these values of m is the true one.

This definition sidesteps the deeper question of what is actually meant by truth of a model, since

models are assumed to only approximate the real world. All we are saying here about the true model value

m0 is that it doesn’t conflict with what we can observe or know, which is �0.

Define a set of parameters � to be a set of unknown constants and/or functions that characterize or

summarize relevant features of a model. Essentially, � can be anything we might want to estimate (more

precisely, � will generally be estimands, i.e., population values of estimators of objects that we want to

learn about). Parameters � could include what we usually think of as model parameters, e.g. regression

coefficients, but � could also be, e.g., the sign of an elasticity, or an average treatment effect.

Assume that there is a unique value of � associated with each model value m (violation of this assump-

tion relates to the coherence and completeness conditions; see Section 4 for details). Let � D 1.m/ be

the function or mapping that defines the particular parameter value � that corresponds to the given model

value m. The true parameter value �0 satisfies �0 D 1.m0/.

Define 2 D f� j � D 1.m/ where m 2 Mg. So 2 is the set of all values of � that are possible given

the model M . Any � =2 2 is ruled out by the model. We can therefore think of 2 as embodying all of the

restrictions on � that are implied by the model.

Similar to 2, define 8 D f� j � D 5.m/ where m 2 Mg. So 8 is the set of all � that are possible

given the model M . Any � that is not in 8 is ruled out by the model. While the set 2 embodies or

describes all the restrictions on the parameters � that are implied by the model, the set 8 embodies all of

the observable restrictions that are implied by the model (assuming that what we can observe is �). The

functions 5 and 1 are 5 M ! 8 and 1 M ! 2.

Define the structure s .�; �/ to be the set of all model values m that can yield both the given values �

and � , that is, s .�; �/ D fm j � D 5.m/, � D 1.m/, and m 2 Mg. We can think of the structure as

embodying the relationship between the parameters � and what we could learn from data, which is �.

Two sets of parameter values � ande� are defined to be observationally equivalent in the model M if
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there exists a � 2 8 such that s .�; �/ 6D ∅ and s
�
�;e�� 6D ∅. Equivalently, � ande� are observationally

equivalent if there exist model values m and em in M such that � D 1.m/,e� D 1.em/, and5.m/ D 5.em/.
Roughly, � ande� observationally equivalent means there exists a value � such that, if � is true, then either

the value � ore� could also be true.

Given observational equivalence, we have what we need to define identification. The parameter � is

defined to be point identified (also sometimes called globally identified and often just called identified)

in the model M if, for any � 2 2 and e� 2 2, having � and e� be observationally equivalent implies

� D e� . Let �0 2 2 denote the unknown true value of � . We can say that the particular value �0 is point

identified if �0 is not observationally equivalent to any other value of � 2 2. The key point is that all we

can know is �0, and �0 D 5.m0/. We therefore can’t distinguish between m0 and any other m for which

5.m/ D 5.m0/, and so we can’t distinguish between � D 1.m/ and �0 D 1.m0/ if any such m exists.

And, since we don’t know before hand which of the possible values of � will be the �0 that we see, and

we don’t know which of the possible values of � is the true �0, to ensure point identification we require

that no pairs of values � ande� be observationally equivalent.

In practice, ensuring point identification may require that the definition of the model rules out some

model values m, specifically, those for which 1.m/ is observationally equivalent to some 1.em/. Equiva-

lently, the set 2 may be limited by ruling out values that can’t be point identified.

We have now defined what it means to have parameters � be point identified. We say that the model is

point identified when no pairs of model values m and em in
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