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Abstract

We study the identi�cation and estimation of treatment e�ect parameters in weakly separable models. In

their seminal work, Vytlacil and Yildiz (2007) showed how to identify and estimate the average treatment

e�ect of a dummy endogenous variable when the outcome is weakly separable in a single index. Their

identi�cation result builds on a monotonicity condition with respect to this single index. In comparison,

we consider similar weakly separable models with multiple indices, and relax the monotonicity condition

for identi�cation. Unlike Vytlacil and Yildiz (2007), we exploit the full information in the distribution of

the outcome variable, instead of just its mean. Indeed, when the outcome distribution function is more

informative than the mean, our method is applicable to more general settings than theirs; in particular we

do not rely on their monotonicity assumption and at the same time we also allow for multiple indices. To

illustrate the advantage of our approach, we provide examples of models where our approach can identify

parameters of interest whereas existing methods would fail. These examples include models with multiple

unobserved disturbance terms such as the Roy model and multinomial choice models with dummy endogenous







whereP(z) � E(DjZ = z). The only term that is not directly identi�able on the right-hand

side of (2.1) is

E(Y1jD = 0; X = x; Z = z) = E[g(v(x; 1); ")jU � P(z)].

The main idea behind our approach follows that of Vytlacil and Yildiz (2007), which is to

�nd some ~x 2 S0 such that

v(x; 1) = v(~x; 0) (2.2)

so that

E(Y jD = 0; X = ~x; Z =





the assumption that v(X; D ) 2 R is a single index and that for any (x; ~x) 2 (S1 � S0),

E [g(v(x; 1); ")jU = u] = E [g(v(~x; 0); ")jU = u] if and only if v(x; 1) = v(~x; 0). There are

two shortcomings with this approach. First, it requires the condition (Assumption 4) that

E [g(v(x; d); ")jU = p] is a strictly monotonic function of v(x; d). Second, whenv(x; d) is a

vector of multiple indices instead of a single index, their approach breaks down. In compar-

ison, we achieve the same purpose by matching conditional distributionsFgjp(�; v(x; 1)) and

Fgjp(�; v(~x; 0)). As we show in Section 3, in several important applications, the outcome Y is

either discrete (e.g. multinomial choices), or multi-dimensional with both discrete and con-

tinuous components (e.g., potential outcomes determined by a Roy model). In either cases,

the latent index function v(:) is vector-valued and the monotonicity condition in Vytlacil

and Yildiz (2007) is not satis�ed.

3 Examples

We now present several examples in which the latent indices are multi-dimensional. In the

�rst and third example, the monotonicity condition in Vytlacil and Yildiz (2007) is not sat-

is�ed; in the second example, the identi�cation requires a generalization of the monotonicity

condition into an invertibility condition in higher dimensions.

Example 1. (Heteroskaedastic shocks in outcome) Consider a triangular system where

a continuous outcome is determined by double indicesv(X; D ) � (v1(X; D ); v2(X; D )):

Y = g(v(X; D ); ") = v1(X; D ) + v2(X; D )" for D 2 f 0; 1g.

The selection equation determining the actual treatment is the same as (1.2). In this case

the concept of monotonicity in v 2 R2 is not well-de�ned, so the procedure proposed in

Vytlacil and Yildiz (2007) is not suitable here3. Nevertheless, we can apply the method in

Section 2 to identify the average treatment e�ect by using thedistribution of outcome to

�nd pairs of x and ~x such that v(x; 1) = v(~x; 0). Assume the range ofv2(�) is positive. To

see the necessity in Assumption A4, note that

Fgju(y; v(x; d)) = E [v1(x; d) + v2(x; d)" � yjU = u]

= F" ju

�
y � v1(x; d)

v2(x; d)

�

3For this particular design, the approach proposed in Vuong and Xu (2017) should be valid. But it will
not be for a slightly modi�ed model, such as Y = v1(X; D ) + ( e2 + v2(X; D ) � e1), whereas ours will be.
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for d = 0; 1. If the CDF of " is increasing overR, then for all y and x 2 S1 and ~x 2 S0,

Fgju(y; v(x; 1)) = Fgju(y; v(~x; 0))

if and only if

y � v1(x; 1)
v2(x; 1)

=
y � v1(~x; 0)

v2(~x; 0)
.

Di�erentiating with respect to y yields

v2(x; 1) = v2(~x; 0)

which in turn implies

v1(x; 1) = v1(~x; 0).

The su�ciency in Assumption A-4 is straight-forward.

Example 2. (Multinomial potential outcome) Consider a triangular system where

the outcome is multinomial. The multinomial response model has a long and rich history in

both applied and theoretical econometrics. Recent examples in the semiparametric literature

include Lee (1995), Ahn, Powell, Ichimura, and Ruud (2017), Shi, Shum, and Song (2018),

Pakes and Porter (2014), Khan, Ouyang, and Tamer (2019). But unlike the work here, none

of those papers allow for dummy endogenous variables or potential outcomes.

Y = g(v(X; D ); ") = arg max
j =0 ;1;:::;J

y�
j;D

where

y�
j;D = vj (X; D ) + " j for j = 1; 2; :::; J ; y�

0;D



By Ruud (2000) and Ahn, Powell, Ichimura, and Ruud (2017), the mapping fromv 2 RJ

to (Fgju(j ; v) : j � J ) 2 RJ is smooth and invertible provided that" 2 RJ has non-negative

density everywhere. This implies Assumption A-4.

Example 3 . (Potential outcome from the Roy model) Consider a treatment e�ect

model with an endogenous binary treatmentD and with the potential outcome determined by

a latent Roy model. The Roy model has also been studied extensively from both applied and

theoretical perspectives. See for example the literature survey in Heckman and E.Vytlacil

(2007) and the seminal paper in Heckman and Honor�e (1990).

Here the observed outcome consists of two pieces: a continuous measureY = DY1 +(1 �

D)Y0 and a discrete indicatorW = DW1 +(1 � D)W0 for d = 0; 1. These potential outcomes

are given by

Yd = max
j 2f a;bg

y�
j;d and Wd = arg max

j 2f a;bg
y�

j;d

wherea and b index potential outcomes realized in di�erent sectors, with

y�
j;d



This would allow us to recover the right hand side of (3.1) as

Prf Y0 � y; W0 = a j X = ~x; Z = z; D = 0g.

To �nd such a pair of (x;



Example 4. (Potential outcome with random coe�cients) Random coe�cient models

are prominent in both the theoretical and applied econometrics literature. They permit a

exible way to allow for conditional heteroscedasticity and unobserved heterogeneity. See,

for example Hsiao and Pesaran (2008) for a survey. Here we consider a treatment e�ect

model where the potential outcome is determined through random coe�cients:

Y = DY1 + (1 � D)Y0 whereYd = ( � d + X 0� d) for d = 0; 1

and the binary endogenous treatmentD is determined as in the selection equation (1.2).

The random intercepts � d 2 R and the random vectors of coe�cients � d are given by

� d = �� d(X ) + � d and � d = �� d(X ) + "d

where for anyx and d 2 f 0; 1g., ( �� d(x); �� d(x)) 2 RK +1 is a vector of constant parameters

while � d 2 R and "d 2 RK are unobservable noises.

As in Vytlacil and Yildiz (2007), assume some elements inZ in the selection equation

are excluded fromX . We allow the vector of unobservable terms (� 1; � 0; � 0; � 1; U) to be

arbitrarily correlated. We also assume that

(X; Z ) ? (� 1; � 0; � 0; � 1; U), (4.1)

with the marginal distribution of U normalized to standard uniform, so that� (Z ) is directly

identi�ed as P(Z ) � E(DjZ =



while the second term is counterfactual and can be written as

� 0(x; y; p) � E [1f U � Pg1f � 1 + X 0� 1 � ygjX = x; P = p]

= E[1f U � pg1f �� 1(x) + � 1 + x0( �� 1(x) + "1) � yg]

=
Z 1

p
Prf � 1 + x0� 1 � y � �� 1(x) � x0�� 1(x)jU = ugdu.

For any p on the support ofP given X = x, de�ne

h�
1(x; y; p) � E [D1f Y � yg jX = x; P = p]

= E [1f U < P g1f � 1 + X 0� 1 � yg jX = x; P = p] = E [1f U < pg1f � 1 + x0� 1 � yg]

=
Z p

0
Prf � 1 + x0� 1 � y � �� 1(x) � x0�� 1(x)jU = ugdu;

where the second equality uses (4.1). Likewise, under (4.1) we have:

h�
0(x; y; p) � E [(1 � D)1 f Y � yg jX = x; P = p]

=
Z 1

p
Prf � 0 + x0� 0 � y � �� 0(x) � x0�� 0(x)jUi = ugdu.

Assume4

F(� 1 ;� 1 )jU2ual and can=



because of (4.3). Thus the counterfactual� 0(x; y; p) would be identi�ed as h�
0(x; t (x; y); p).

It remains to show that for each pair (x; y) we can uniquely recovert(x; y) using quan-

tities that are identi�able in the data-generating process. To do so, we de�ne two auxiliary

functions as follows: forp1 > p 2 on the support ofP given X = x, let

h1(x; y; p1; p2) � h�
1(x; y; p1) � h�

1(x; y; p2)

=
Z p1

p2

Prf � 1 + x0� 1 < y � �� 1(x) � x0�� 1(x)jU = ugdu;

and

h0(x; y; p1; p2) � h�
0(x; y; p2) � h�

0(x; y; p1)

=
Z p1

p2

Prf � 0 + x0� 0 < y � �� 0(x) � x0�� 0(x)jU = ugdu.

Suppose� d + x0� d is continuously distributed over R for all values of x conditional on all

u 2 [0; 1]. Then for any �xed pair (x; y) and p1 < p 2,

h1(x; y; p1; p2) = h0(x; t (x; y); p1; p2)

if and only if

t(x; y) = y � �





Now we describe an estimation procedure for the distributional treatment e�ect in Ex-

ample 4, where we had a model with random coe�cients. In this case, the parameter of

interest is for a chosen value of the scalary,

� 2(y) = Pr f Y1 � yg.

First, for �xed values of y and p1 > p 2, we propose to estimatet(x; y) as

t̂(x; y; p1; p2) = arg min
t

(h1(x; y; p1; p2) � h0(x; t; p1; p2))2

and then average over values ofp1; p2:

�̂ (x; y) =
1

n(n � 1)

X

i 6= j

I [Pi > P j ]t̂(x; y; Pi ; Pj )

An infeasible estimator for the parameter �2(y), which assumest(x; y) is known, would be

�̂ 2(y) =
1
n

nX

i =1

(D i 1f Yi � yg + (1 � D i )1f Yi � t(X i ; y)g) .

In practice, for feasible estimation, one needs to replacet(x; y) by its estimator �̂ (x; y).

6 Simulation Study

This section presents simulation evidence for the performance of the proposed estimation

procedures described in Section 5, for both the Average Treatment E�ect and the Distri-

butional Treatment E�ect. We report results for both our proposed estimator and that in

Vytlacil and Yildiz (2007), for several designs. These include designs where the said mono-

tonicity condition fails, and designs where the disturbance terms in the outcome equation

are multidimensional.

Throughout all designs we model the treatment or dummy endogenous variable as

D = I [Z � U > 0]

whereZ; U are independent standard normal. We experiment with the following designs for

the outcome

Design 1

Y = X + 0:5 � D + �

whereX is standard normal, (�; U ) are distributed bivariate normal, each with mean

0 and variance 1, with correlations of 0,0.25,0.5.
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Design 2

Y = X + 0:5 � D + ( X + D) � �

whereX is distributed standard normal, (�; U ) are distributed bivariate normal, each

with mean 0 and variance 1, with correlations of 0,0.25,0.5.

Design 3

Y = ( X + 0:5 � D + � )2

whereX is distributed standard normal, (�; U ) are distributed bivariate normal, each

with mean 0 and variance 1, with correlations of 0,0.25,0.5.

We note that the monotonicity condition is satis�ed in design 1 but fails in the other

two designs. For each of these designs, we report results for estimating the parameter

E[Y1], which denotes the expected value for potential outcome under treatmentD = 1.

The two estimators used in the simulation study were the one proposed in Section 5 and

the method proposed in Vytlacil and Yildiz (2007). The summary statistics, scaled by the

true parameter value, Mean Bias, Median Bias, Root Mean Squared Error, (RMSE), and

Median Absolute Deviation (MAD) were evaluated for sample sizes of 100, 200, 400 for 401

replications. Results for each of these designs are reported in Tables 1 to 3 respectively.



the sample size grows, which is expected, as the monotonicity condition rely on is satis�ed

in these designs. In this case, their approach has smaller standard errors largely due to the

relative simpler structure of the infeasible version, but their biases persist even when the

sample size increases.

For designs 2 and 3, where monotonicity is violated, the procedure proposed in Vytlacil

and Yildiz (2007) does not perform well. In design 2 in Table 2 both the bias and RMSE

are generally increasing with the sample size. Results for their estimator are better in design

3, but the bias hardly converges with the sample size and is much larger compared to our

estimator.

We also simulate data from a model with dummy endogenous variable and potential

outcomes determined by random coe�cients. It is important to note that for this design, the

original matching idea in Vytlacil and Yildiz (2007) does not apply. This is because di�erent

values ofx lead to di�erent distribution of the composite error � d + x0� d. Our contribution

in Section 4 is to propose a new approach based on matching di�erent values of outcomey,

rather than the regressorsx. Based on the counterfactual framework discussed in Section

4, here the treatment variableD is modeled as the same way as the dummy endogenous

variable above. Similarly the regressorX is standard normal. For bothY0; Y1 the random

intercepts were modeled as constants (0 and 1, respectively) and the additive error terms

were each standard normal. For the random slopes, the means were 1 and 2 respectively,

and the additive error terms were also standard normal, independent of all other disturbance

terms and each other. Here we use the procedure in Section 4 to estimate the parameter

� 2 = P(Y1 < y ), where in the simulation we sety = 1. The same four summary statistics

are reported for sample sizes 100,200,400, based on 401 replications. Results for this random

coe�cients design are reported in Table 4.

The estimator proposed in Section 5 performs well; but the bias and RMSE are much

small at 400 observations compared to 100 and 200 observations, indicating convergence at

the parametric rate.
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Table 1

CKT VY

� v 0 1=4 1=2 0 1=4 1=2

n=100



Table 4

CKT

� v 0 1=4 1=2

n=100
MEAN BIAS 0.0109 -0.0086 0.0038
MEDIAN BIAS 0.0000 -0.0064 0.0126
RMSE 0.1011 0.0979 0.0955
MAD 0.0600 0.0648 0.0652
n=200
MEAN BIAS -0.0050 -0.0150 0.0095
MEDIAN BIAS -0.0100 -0.0161 0.0029
RMSE 0.0669 0.0669 0.0665
MAD 0.0400 0.0454 0.0457
n=400
MEAN BIAS 0.0012 -0.0132 0.0074
MEDIAN BIAS 0.0049 -0.0162 0.0077
RMSE 0.0501 0.0494 0.0495
MAD 0.0349 0.0325 0.0360

7 Conclusion

In this paper, we considered identi�cation and estimation of nonseparable models with en-

dogenous binary treatment. Existing approaches are based on a monotonicity condition,

which is violated in models with multiple unobserved idiosyncratic shocks. Such models

arise in many important empirical settings, including Roy models and multinomial choice

models with dummy endogenous variables, as well as treatment e�ect models with random

coe�cients. We establish novel identi�cation results for these models which are construc-

tive and conducive to estimation procedures which are easy to compute and whose limiting

distributional properties follow from standard large sample theorems. A simulation study

indicates adequate �nite sample performance of our proposed methods.

This paper leaves open areas for future research. Our method requires the selection of the
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