REAL ANALYSIS QUALIFYING EXAM

AUG 2017

Answer all 4 questions. In your proofs, you may use any major theorem, except the result you are trying to prove (or a variant of it). State clearly what theorems you use. Good luck.

Exercise 1. (25 points). Suppose $(X \setminus X)$ is a measure space.

- (1) What does it mean for a function : XR to be measurable?
- (2) State the monotone convergence theorem for this measure space
- (3) State and prove Fatou's Lemma, relating $\int \lim \inf_{n}$ and $\lim \inf \int_{n}$ [Hint: Consider the functions $n() = \inf_{j \ge n - j} ()$, and use the monotone convergence theorem appropriately]

Exercise 2. (25 points).

Let \setminus be finite measures on a measure space (X) and let \downarrow = \downarrow .

- (1) Define the notion of an absolutely continuous measure and show that absolutely continuous with respect to . . .
- (2) State the Radon-Nikodym theorem with respect to and and define the
- Radon-Nikodym derivative $=\frac{d}{d}$. (3) Assme that is absolutely continuous with respect to and show that 0. 1 -a.e. and that $\frac{d}{d\mu} = \frac{f}{1-f}$.

Exercise 3. (25 points).

Let $(X \setminus X)$ be a measure space and let $X = X^{\infty}(X)$.

- (1) Define the norms_ $-\infty$ and $-\infty$ and the spaces $-\infty(X)$ and $-\infty(X)$ for
- (2) Show that p(X) for all 1. p(X) and that $\lim_{p\to\infty} p(X) = p = -\infty$.

Exercise 4. (25 points).

Let (n) be a sequence of real valued Lebesgue measurable functions on R. For each statement, prove or give a counter example:

- (1) If every subsequence n_k has subsequence n_{k_l} that converges in 1 to 0, then the original sequence converges in ¹.
- (2) If every subsequence n_k has subsequence n_k , that converges almost everywhere to 0, then the original sequence converges almost everywhere.

COMPLEX ANALYSIS QUALIFYING EXAM

Write your answers on the test pages. Show all your work and explain all your
reasoning. You may use any standard result, as long as you state clearly what result
you are using (including its hypotheses). Exception: you may not use a result which
is the same as the problem you are being asked to do. Each problem has a noted
value, in total 40 points.

Name:			

Date: August 25, 2017.

2. (10 points) Evaluate the following integral:

$$\frac{d}{5+3\cos}.$$

3. (10 points) Suppose f and g

4. (10 points) Let X be a closed and connected Riemann surface. Let be a meromorphic one-form on X. Prove that the sum of residues of is zero.