Introduction

The origins of aggregate fluctuations are of essential interest to modern macroeconomics, as reaffirmed by the recent nancial crisis and ensuing recession. A large literature has sought to explain the role of nancial factors in the context of the financial accelerator mechanism, relying on representative agent assumptions in which a creditor lends to a borrower. This, however abstracts from the credit relationships amongst heterogeneous borrowers and lenders that characterizes most advanced economies. Yet the credit linkages between firms may propagate firm-level shocks across the economy. The literature has therefore overlooked a potentially important source of aggregate uctuations, and is in need of a framework for evaluating whether the credit relationships between non-financial firms play a role in the business cycle.

To this end, I build a tractable model of a credit network economy in which trade in intermediate goods is financed by supplier credit. I show analytically how the trade credit linkages between non-financial firms generate aggregate fluctuations from firm-level shocks, and show that the mechanism is quantitatively important. I combine firm-level balance sheet data and industry-level input-output data to construct a proxy of supplier credit flows at the industry-level. I use this proxy to calibrate my model, and quantitatively analyze how the aggregate impact of idiosyncratic shocks depends on the structure of the credit network. I then use a structural factor approach to estimate the shocks which hit the US manufacturing and mining sectors over the period 1997-2013. Second, I use the model to shed light on the origins of aggregate fluctuations in the US by decomposing observed movements in industrial production (IP) into components arising from four types of shocks: aggregate productivity, idiosyncratic productivity, aggregate liquidity, and idiosyncratic liquidity shocks.

In so doing, I make two contributions to the literature. First, I show that the c (el)-280dss Tolink

is the single most important source of short-term external finance for firms, accounting for more than half of firms' short-term liabilities and more than one-third of their total liabilities in most OECD countries.² In the US, accounts payable was three times as large as bank loans and fifteen times as large as commercial paper outstanding, on the aggregate balance sheet of non-financial corporations in 2012.³ All of these facts point to the presence of strong credit linkages between non-financial firms.

An important feature of trade credit is that it leaves suppliers exposed to the liquidity problems of their customers. A notable example of this is the US automotive industry in 2008, when the Big Three automakers (Chrysler, Ford, and GM) faced a serious shortage of liquidity. While Ford did not require a bailout, it requested one from the US Congress on behalf of its competitors, fearing that a bankruptcy by Chrysler or GM would transfer the liqudity shortage to their common suppliers, as the money owed to them could not be paid until they exited bankruptcy. This episode suggests that when firms play a dual role of supplier and creditor, a shock may not only affect trade directly, but also the availability of liquidity to finance the trade.

There is growing evidence to suggest that this intuition is empirically relevant. A number of studies including Boissay and Gropp (2012), Jacobson and von Schedvin (2015), and Raddatz (2010) - have found that firm- and industry-level trade credit linkages propagate liquidity shocks from firms to their suppliers. In spite of this evidence, the macroeconomic implications of trade credit have been largely overlooked in the literature. I therefore develop a framework for understanding how inter-firm trade and credit interact in response to credit conditions.

I consider an economy in which firms are organized in a production network and trade intermediate goods with one another. Each intermediate good is produced using labor and other intermediate goods. There is

A firm-level liquidity shock propagates to other firms in the network via two channels. First is the standard input-output channel which has been the focus of studies such as Acemoglu et al. (2012) and Bigio and La'O (2013): the shocked firm cuts back on production, reducing the demand faced by its suppliers and reducing the supply of its good to its customers.

But the credit linkages between firms implies that there is a new channel of propagation - which I call the credit linkage channel - in which the shock directly affects the cash-in-advance payment received by the firm's suppliers. When the shocked firm cuts back on production, the price of its good rises, which increases the collateral value of its receivables. Able to obtain a higher trade credit loan (per unit of output) from its suppliers, the firm reduces the cash-in-advance payments it makes upstream. With less cash, the suppliers are more liquidity constrained, and they may themselves be forced to further cut back on their own production. If these suppliers cut back on production, they reduce their demand for labor, amplifying the aggregate effect

aggregate and idiosyncratic productivity shocks. A variance decomposition of aggregate IP shows that the credit network of these industries accounts for one-fth of aggregate IP volatility.

Much of the previous literature has relied on aggregate productivity shocks to drive the business cycle. Yet by many accounts, this has been an unsatisfactory explanation due to the lack of direct evidence for shocks. This paper shows, however, that when one takes into account the credit linkages between non-financial firms in the economy, the role of aggregate productivity shocks is minimal. On the contrary, aggregate liquidity shocks seem to play a vital role the business cycle. Indeed, the importance of shocks emanating from the financial sector to real economy as a whole is well-documented. Thus, this paper suggests that a large fraction of aggregate fluctuations are perhaps driven by shocks from the financial sector emanating to the real economy.

The rest of the paper is organized as follows. The next section reviews some of the literature to which this paper is related. Part I introduces the model. The first part of the model considers a simple version in which the structure of the production network is a supply chain. I derive analytical results using a stylized version of the full model. In the next part, I generalize the production network structure. Part II is a quantitative analysis. I describe the proxy of trade credit flow, the calibration, and quantiative results. In Part III, I perform my empirical analysis, and discuss the results.

Literature Review

(In progress).

This paper relates to several strands of the literature. There is a large literature on the role of nancial frictions in macroeconomics. Studies such as Bernanke and Gertler (1995), Bernanke et al. (1999), and Kiyotaki and Moore (1997b) evaluate the link between financial factors and the real economy. Most of this literature abstracts from heteregeneous agents models. Also, there has been little attention given to the credit relationships between non-financial firms. I consider a financial accelerator mechanism in the context of a network model and show that amplifies its effects.

A growing literature looks to network effects as a multiplier mechanism which can generate aggregate uctuatinos from idiosyncratic shocks. Much of this literature builds on the multi-sector RBC model of Long and Plosser (1983). Most notably, these include Acemoglu et al. (2012), Shea (2002), Dupor (1999), Horvath (1998), Horvath (2000), and Acemoglu et al. (2015). These studies all focus on the role of ingut-outgut linkages between firms. In ut-specificity in the production of intermediate goods prevents firms from easily switching suppliers or customers in response to productivity shocks. Gerenally, these models rely on certain structural propeorties of a network in which idiosyncratic shocks to firms in economy do not average out. Systemically important firms, who take a central role in the network, propagate shocks across other firms in the network generating movements at the aggregate level of the economy. However, most of this literature do not model how trade in intermediate goods is financed. Indeed, most abstract away from financial frictions.

A notable work to which this paper is most closely related is that of Bigio and La'O (2013), who examine

Part I

Model

In Part I, I introduce and analyze the model. This section has two has two parts. For ease of exposition, it is instructive to first consider the special case of a vertical production network. I refer to this as the stylized model. The analytical tractability of this case permits closed-form expressions for aggregate output. In the second part, I generalize the network structure.

1 Stylized Model: Vertical Production Structure

1.1 Economic Environment

There is one time period, consisting of two parts. At the beginning of the period, contracts are signed. At the end of the period, production takes place and contracts are settled. There are three types of agents: a representative household, firms, and a bank. There are M goods, each produced by a different firm. (Here the productive unit could similarly be called an industry, which is comporised of a continuum of competitive firms). Each good can be consumed by the household0o.Inoldusroddusro the groduction of other goods.

1.2 Representative Household0]TJ/F43 9.9626 Tf 0 -24.365 Td [(1.2.1)-1149(Preferences)]TJ/F15 9.

goods,h pro $n427(TJ/F159.9828Tf150.41c)28(h) - N-28(o) - 27(d) - 1(s) - 32.411ch$

$$
C = wN + \sum_{i=1}^{X^{N}} (1)
$$

1.2.2 Optimality

The household's optimality condition is given by

$$
\frac{V^{0}(N)}{U^{0}(C)} = W
$$
 (2)

This equates the competitive wage with the marginal rate of substitution between labor and consumption.

1.3 Firms

There are M firms who each produce a different good. Suppose for now that firms are arranged in a supply chain, where each firm produces an intermediate good for one other firm. The last firm in the chain produces the consumption good, which it sells to the household. Firms are indexed by their order in the supply chain, with $i = M$ denoting the producer of the final good.

Firms are price-takers.⁴ The production technology of firm i Cobb-Douglas over labor and intermediate goods.

8
\n
$$
x_{i} = \begin{cases} 8 & \text{for } i = 1 \\ z_{i} \, n_{i} \, x_{i-1}^{(1)} & \text{for } i = 1 \\ z_{i} \, n_{i} \, x_{i-1}^{(1)} \, x_{i}^{(1)} & \text{for } i > 1 \end{cases}
$$

Here, x_i denotes firm i's out_sut, n_i its labor use, and x_{i-1} its use of good i 1. Parameter z_i denotes firm i's total factor productivity, i the share of labor in its production, and ! i;i 1 the use of good i 1 in firm i's groduction. Let p_s denote the grice of good s. The value of the sales from firm s to firm c is then $p_s x_{cs}$.

The ingut-output structure of the economy can be summarized by a matrix of inof

Bank lending: Each firm chooses how much to borrow from the bank, subject to a limited enforcement problem. Firm i can obtain the loand from the bank at the beginning of the period by pledging a fraction B_i of its total end-of-the-period revenue $p_i x_i$, and a fraction 1 of its accounts receivable $_{i+1}$, where 1. Thus, firm i faces a bank borrowing constraint of the form

$$
b_i \t B_i p_i x_i + (1) i
$$

Parameters B_i and provide an exogenous source of liquidity to each firm, and represent the severity of the agency problem between firm i and the bank. I will later show that parameterizes the degree of substitutability between bank credit and cash-in-advance _sayments from customers. Since **b** is chosen by firm i these bank borrowing constraint will bind in equilibrium as each firm obtains the maximum bank loan possible.

Trade credit : Each firm i chooses the size of the trade credit loan $\frac{1}{1}$ it obtains from its supplier. But a limited enforcement problem between firms places a limit on the size of this loan. In particular, firm i can pledge a fraction i of its end-of-the-period out put to repay its supplier. Then the trade credit loan is bounded by the collateral value of firm i's output

$$
i-1 \qquad \quad i; i-1 \, p_i \, X_i
$$

The precise limited enforcement problem which produces this borrowing constraint is described in detail in the Appendix. In equilibrium, the firm takes the maximum loan that the supplier will allow, and so the borrowing constraint binds. This pins down the trade credit loan from supplier i 1 at i 1 = i;i 1PiXi. Note that the size of the loan to firm i depends on the price p_i of its good. (Hence, changes in the collateral value of good x_i will change the amount of cash-in-advance that supplier i 1 can collect.)

The structure of the credit network between firms can be summarized by the matrix of ϕ ij 's.

where

$$
i = \frac{b_i}{p_i x_i} + \frac{i - 1}{p_i x_i} + 1 = \frac{i}{p_i x_i}
$$

The variable _i denotes the **tightness** of firm i's liquidity constraint. Notice that is decreasing in $\frac{1}{p_1x_1}$, the amount of i's outgut sold on credit: the more credit that i gives its customer, the less cash it collects at the beginning of the period. We can replace i using $i + 1$'s binding supplier borrowing constraint, to re-write i.

$$
i = B_i + i_{i,i-1} + 1 \qquad i+1 \, ; i \, \frac{p_{i+1} \, x_{i+1}}{p_i \, x_i} \tag{4}
$$

Equation (4) shows that μ is an equilibrium object; it is an endogenous variable which depends on the revenue of firm i and firm $i + 1$. Hence, changes in the price of its customer's good affect the tightness of firm i's liquidity constraint. Note also that the dependence of i on prices p_i and p_{i+1} means that changes a shock will have general equilibrium e ects on each i.

inguts, it does not distort the firm's ogtimal choice of expenditure on labor versus the intermediate good. However, the constraint will limit the firm's **total** expenditure on both inputs.

If firm i's liquidity constraint is not binding in equilibrium, then it simply maximizes its profit function. Its optimal level of expenditure on each input is determined by a condition which equates the marginal cost of the ingut with its marginal revenue groduct. The firm's exgenditure on labor is therefore given by

$$
wn_i = \ _ip_ix_i \ ; \qquad p_{i-1} = \textcolor{red}{!} \ _{i;i-1} (1-\ _i) \frac{p_ix_i}{x_{i-1}}
$$

If, on the other hand, the constraint is binding in equilibrium, then the amount of liquidity $\mathbf{p}_i \mathbf{x}_i$ that firm i has limits how much the firm can spend on both inputs. In particular, firm i's expenditure on labor and good i 1 is given by

$$
wn_i\,=\,\frac{i}{r_i}\,\ _ip_ix_i\ ;\qquad \ p_{i-1}\,=\,\frac{i}{r_i}!\,\ _{i;i-1}(1\quad \ \ \, i)\frac{p_ix_i}{x_{i-1}}
$$

I show in the Appendix that firm i

Re-arranging this and reglacing $\frac{p_{i+1}\;x_{i+1}}{p_i\;x_i}$ in (#) yields $\;$ $\;$ $\;$

$$
\begin{array}{c}\n\text{M} & P \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
\downarrow & \downarrow\n\end{array}
$$

Thus, equilibrium aggregate out ut is log-linear in each firm's labor wedge, and equals Y if and only if ϵ = 1 for all i - i.e. if no firm's liquidity constraint is binding in equilibrium.⁵ captures the aggregate liquidity available to all firms in the economy for trade in inputs. Therefore, (7) says that equilibrium aggregate out is constrained by the aggregate liquidity in the economy at the beginning of the period. Notice that through γ , firms who are further downstream have a higher share of total employment through the use of intermediate goods, and therefore have a higher impact on aggregate liquidity.

1.4.1 Equilibrium Characterization

To summarize the equilibrium, the cash-in-advance constraints faced by firms induces a wedge on their production, which depends on the tightness of their constraints. But in a setting where firms share liqudiity via trade credit, these wedges depend endogenously on the prices of downstream goods and the structure of the credit network. In the next section, I explore the implications of this endogenous relationship between wedges and prices for how aggregate output responds to firm-level shocks.

At this stage, it is worth discussing how this economy compares to that of Bigio and La'O (2013). The novelty of Bigio and La'O (2013) is to show how wedges aggregate in an input-output network. However, in Bigio and La'O (2013), all payments between firms are settled at the end of the period after production takes place. As a result, there is no role for trade credit; and i and i are fixed exogenously. As I show in the next section, the endogeneity of the wedges means that the economy behaves qualitatively very differently in response to local shocks.

1.5 Aggregate Impact of Firm-Level Shocks

In this section, I examine the response of aggregate output to firm-level liquidity and productivity shocks.

1.5.1 Liquidity Shocks

I model a liquidity shock to firm i by a change in B_i , the fraction of firm i's revenue that the bank will accest as collateral for the bank loan. Consider a marginal fall in B_i given by $d B_i$. This is a reduced-form way to casture an adverse shock to firm i's bank which affects the ability of firm i to obtain credit for purchasing inputs.⁶

$\text{C}\Theta$ U $\prod_{i=1}^{\text{The kink in files } i}$ over dierentiable with respect to $\text{C}\Theta$ is $\text{C}\Theta$ Y

⁵Note that although Y is log-linear in each $\frac{1}{1}$, it is not globally log-linear in $\frac{1}{1}$ $\frac{1}{1}$. (This is reected in the kink in i at $_i = r_i$.) Why is Y not globally log-linear in i ? The liquidity constraint creates a kink in the policy function for employment n_i at the point at which the liquidity constraint is no longer binding, i.e. at $\frac{1}{2}$ in $\frac{1}{2}$ is not di erg fliable with respect to $\frac{1}{2}$ at $\frac{1}{2}$ if $i = r_i$. This kink carries over to Y in aggregation.

The fall in B_i directly affects the amount of cash firm i can raise at the beginning of the period. The closed-form expression for α i (4) shows that the fall in B_i causes firm i's liquidity constraint to tighten.

$$
\frac{d_i}{dB_i} = 1 > 0
$$

If firm i's liquidity constraint is binding in equilibrium, then the tighter liquidity constraint forces the firm

```
+
2) \# i 1=) drop in demand for all j < i 1; drop in supply for all j > i 1 =) Y falls
 +
3) \# i 2=) drop in demand for all j < i 2; drop in supply for all j > i 2 =) Y falls
 .
.
.
          \begin{align} \mathsf{d} \mathsf{li} \ \mathsf{v} \ \mathsf{v}
```
In this manner, the credit linkages between firms trigger the standard input-output channel at every level of production, increasing the total demand/supply effects faced by each firm. Thus, a firm-level liquidity shock to in my model is isomorphic to an aggregateliquidity shock to all firms in a model with fixed wedges, e.g. Bigio and La'O (2013). I explore this point in further detail in the quantitative analysis.

1.5.2 Impact of Firm-Level Shock on Aggregate Output

I now formalize the network effects of the shock on aggregate out \ast ut. Recall from (7) that equilibrium aggregate out ut is log-linear in each firm's wedge

$$
\log Y = \log Y + \log Y
$$

Then the elasticity of aggregate out ut with respect to firm i's bank borrowing B_i is given by

d log Y

1.5.3 Productivity Shocks

Now consider a productivity shock to firm i, represented by a fall in i's total factor productivity (TFP) z_i . What is the effect on aggregate out ut? Recall the closed-form expression (7) for aggregate output

$$
Y = Y
$$

where

$$
Y \qquad \qquad \begin{array}{ccc} \text{M} & & \text{M} & \text{P} \\ \text{N} & \text{N} & \text{P} \\ \text{N} & \text{N} & \text{N} \end{array}
$$

I claim that is independent of z_i . To see this, first recall that $_M = \min f 1$; $\frac{M}{r_M} g$, where $M = M; M \rightarrow j$

of the economy which can be taken to the data. To this end, I return to the general network framework in the next section.

2 General Model

I now return to the general groduction network structure summarized by

$$
\begin{array}{c}\n2 \\
111 \\
\hline\n6 \\
121 \\
\hline\n122 \\
\hline\n123 \\
\hline\n133 \\
\hline\n140 \\
\hline\n150 \\
\hline\n160 \\
\hline\n175 \\
\hline\n180 \\
\hline\n190 \\
\hline\n100 \\
$$

$$
\frac{p_i \, c_i}{p_j \, c_j} \, = \, \, \frac{\;\;}{\;\;i}\ \ \, , \qquad N^{\, 1+}\ \ \, = \, C
$$

2.2 Firm Liquidity

Each firm's liquidity constraint takes the same form as in the stylized model, with the exception that each firm has M suppliers and M customers instead of just one of each. Firm i is required to pay its wage bill wn_i and its intermediate good purchases $p_s x_{is}$ from each supplier **s** in advance. It receives a loan **b** from the bank and a trade credit loan $\;$ is from each supplier.

$$
wn_i + \n\begin{array}{ccc}\n\mathbb{X}^N & & \mathbb{X}^N \\
(p_s x_{is} & _{is}) & b_i + & p_i x_i \\
\frac{\beta = 1}{\beta} & \{z_{-} \} & & | & -\{\hat{z}^{\geq -1} \} \\
\text{net CIA payment to suppliers} & & & \n\end{array}
$$

the quantitative predictions of the model, which I discuss later on.

Each firm chooses the size of the loan to obtain from each creditor, so that the borrowing constraints bind in equilibrium. Plugging the binding borrowing constraints into firm i's liquidity constraint yields a constraint on i's total input purchases

$$
wn_i + \sum_{s=1}^{M} p_s x_{is} \qquad \qquad i \, p_i \, x_i
$$

where *i* denotes the tightness of *i*'s liquidity constraint.

$$
\begin{array}{ccc}\n & \mathsf{X}^{\mathsf{M}} & & \mathsf{X}^{\mathsf{M}} \\
 & \vdots & \vdots & \vdots \\
 & \vdots & \vd
$$

Note that $\,$ $\,$ is again an equilibrium object, depending on the prices customers' goods $\rm p_c$ and forward credit linkages ci for all c.

TABLE SUMMARIZING DEFINITIONS OF PARAMETERS AND EQ. VARIABLES

2.3 Firm Optimality Conditions and Market Clearing

Firms choose labor and intermediate goods to maximize profits subject to their liquidity constraint. This yields optimality conditions of the same form, equating the ratio of expenditure on each good with the ratio of their marginal revenue products.

$$
\frac{wn_i}{p_j x_{ij}} = \frac{i}{(1-i)! i_j}
$$

Again, the liquidity constraint of firm i inserts a wedge α i between the marginal cost and marginal revenue product of each input

$$
n_{i} = i_{i} \frac{p_{i}}{w} x_{i} \qquad x_{ij} = i (1 - i)! i_{j} \frac{p_{i}}{p_{j}} x_{i}
$$
 (10)

where the wedge depends on the tightness of i's consraint and its returns-to-scale.

$$
i = \min \quad 1; \quad \frac{i}{r_i} \quad ; \qquad r_i \qquad i + (1 \qquad i) \qquad \qquad \frac{\mathbb{X}^N}{j} \quad \text{if} \qquad \qquad (11)
$$

Note that the wedge is still an equilibrium object, depending on collateral value of each customer's output and forward credit linkages. Endogenous wedges imply equilibrium will take same form, and will respond in qualitatively same way as previously.

Market clearing conditions for labor and each intermediate good are given by

there is a unique solution to the system. Since the model is one meriod, the behavior of the system in resmonse
to sh&U38 Uan98e-m86&eTed9899175htmd A24&B8.883.9 In ?AARTel(A)TIPan49aRE4ested=1n14/healysis blib(e)e-131J/ blib(e)e-131J/F3one

3.1 Data

To build my proxy, I use two sources of data: input-output tables from the Bureau of Economic Analysis (BEA) and Compustat North America over the sample period 1997-2013. The BEA publishes annual data on commodity use by industry (Uses by Commodity Table) at the three-digit level of the North American Industry Classification System (NAICS). At this level, there are 58 industries, exlcuding the financial sector. From this data, I observe annual trade flows between each industry-pair, which corresponds to $p_j x_{ij}$ in my model for every industry pair fi; j g. The BEA also publishes an annual Direct Requirements tables at the same level of detail, which indicate for each industry the amount of a commodity that is required to produce one dollar of that industry's output. These values are quite stable over my sample period. In constructing my proxy, and also in calibrating the model later, I use the input-output tables of the median year in my sample, 2005.

Compustat collects balance-sheet information annually from all publicly-listed firms in the US. The available data includes each firm's total accounts payable, accounts receivable, cost of goods sold, and sales in each year of the sample. Therefore, while I cannot identify from whom each firm receives trade credit or to

$$
PayFin_{f,t} = \frac{.5 (AP_{f,t-1} + AP_{f,t})}{COGS_{f,t}}
$$

I do this only for years in which there is data for both AP and COGS for each firm. I obtain a firm-level measure of payables financing by taking the median of $PayFin_{f,t}$ across time, to minimize effect of outliers and get a representative firm-level estimate of the average COGS financed with trade credit. Then to get an industry-level measure of payables financing, I take the median of PayFin_{f} across all firms f in each three-digit level NAICS industry. In this way, I obtain a measure of payables financing for each of my industries.

Raddatz (2010) uses this industry-level measure of PayFin to construct q_i . However, since he only uses AP data, he must impose that $q_j = q_k$ for all j; k. In other words, he assumes that each industry finances the same fraction of purchases with trade credit, across all of its suppliers. This is a fairly strong assumption

3.3 Choosing a Proxy

In this section, I consider an alternative weighting scheme for building the proxy \mathbf{q}_i and compare it with my baseline weighting scheme. Let F_B (PayFin_i; RecLend₎ denote the baseline weighting function for building \mathbf{q}_i , in which weights are assigned each argument according to the size of each industry.

$$
F_B\left(\text{PayFin}_i\,;\,\text{RecLend}_j\,\right)=\,\frac{p_i\,x_i}{p_i\,x_i\,+\,p_j\,x_j}\,\text{PayFin}_i\,+\,\frac{p_j\,x_j}{p_i\,x_i\,+\,p_j\,x_j}\,\text{RecLend}_j
$$

The alternative I consider is F_A , in which I assign equal weights to the arguments.

$$
F_A(PayFin_i; Reclend_j) = \frac{1}{2}PayFin_i + \frac{1}{2}RecLend_j
$$

F^B and F^A are equivalent when all industries have the same revenue. To the extent that there is greater variation in the size of industries, the two weighting schemes will produce different proxies for q_i . Since the variation in the observed size distribution of industries is non-negligable, I need a metric by which to choose between F_B and F_A .

Recall that the measures $PayFin_i$ and

jRecLend_i F_P (PayFin_c; RecLend_i

These two measures respectively measure how much trade credit an industry provides the rest of the economy,

Figure 2:

is one of the most vulnerable industries. (Will expand on this).

5.1.2 Results for for $=$:8

Next, I perform the same exercise for with = :8, allowing for substitutability between bank credit and cash-in-advance payments. Table 2 reports the results.

Even in this more conservative case, the aggregate impact of the shock is quite large: Y falls by 3.15 percent. Although the amplication generated by the credit network falls substantially, it is still quantitatively relevant. The credit linkages between industries produce a larger drop in Y by .54 percentage points. Put differently, the credit network of the US accounts for 17.1 percent of the drop in GDP in response to the aggregate liquidity shock. Therefore, even allowing for firms to substitute lost payments with increased bank borrowing does not substantially diminish the effect of credit linkages in generating aggregate fluctuations. The remainder of the paper uses = :8.

5.2 Industry-Level Liquidity Shocks

Next, I ask which industries are most systemically important in the economy, and how this relates to their position in the credit network. I measure the systemic importance of industry i by the elasticity of aggregate out with respect to its liquidity B_i .⁹ A higher elasticity implies that an industry-level liquidity shock to i has a larger impact on aggregate output.

Figure 4 shows a bar graph of the five most and five least systemically important industries in the US. The blue bars show the elasiticity of aggregate out ut with respect to each industry's liquidity, or the percentage drop in Y following a 1 percent drop in B_i .

The red bars show the contribution of the full credit network to each elasticity, which is computed by subtracting the drop in Y that occurs with credit linkage channel shut off, from the total drop in Y. To shut off the credit linkage channel, I impose that each industry's wedge i changes only in response to a direct liquidity shock to that industry, and not endogenously through credit linkages with other industries.

.069 percent of US GDP, a one percent liquidity shock this industry causes a fall in GDP of .19 percent, due to its input-output and credit linkages with other industries. This is an enormous response in aggregate output. In the absence of any linkages, the elasticity of GDP to this industry's liquidity would be equal to its share of GDP; i.e. GDP would fall by only .089 percent in response to this shock. Therefore, the

industries. On average, increasing the credit out-degree of i's most important supplier increases i's systemic influence by $_{---}$ percentage points. This is a quantitatively significant effect, indicating that the aggregate impact of an industry-level shock to industry i depends strongly on how much liquidity i's main suppliers provide to the rest of the economy.

The reason for this was elucidated by the analytical results of the stylized model, and can be understood in two stess. Sussose industry i exseriences a liqudity shock to B_i , and sussose that its most imsortant supplier is industry j. First, the liquidity shock to i acts as a supply shock to each of its M customers. which increases the price of these customers' goods. This increase in price increases the collateral value of each customer's output. Second, since industry j also supplies goods to these M industries, the increase in collateral value means that $\mathbf i$ collects cash-in-advance becomes more constrained. Industry $\mathbf i$ then passes this shock to to the rest of the economy, and so on. The stronger that industry j 's downstream credit linkages are with other industries, i.e. the higher its credit out-degree, the stronger this effect is, and the greater the aggregate im_pact of the shock to B_i . The mechanics of this is explained in detail in the Appendix using the log-linearized equations.

5.4 Summary of Quantitative Analysis

The quantitative analysis showed that i) the credit linkages between US industries $\frac{1}{2}$ lay a quantitatively

how important for the economy its suppliers are in providing credit.

Therfore an understanding of the role that credit linkages play in propagating idiosyncratic shocks introduces a new notion of the systemic importance of firms or industries based on their place in the credit network. The effects of these linkages are quantitatively important. Therefore, by overlooking the importance of credit linkages between nonfinancial firms, the literature has missed an important determinant of what makes an industry or firm systemically important.

5.5 Aggregate Productivity Shock

Part III Empirical Analysis

Now that I have established the role that the credit network plays in propagating shocks, and shown that it can play a quantitatively significant role in generating fluctuations in aggregate output by amplifying

6.1 Data

From the Federal Reserve Board's Industrial Production Indexes, I observe the growth rate in output of all

affect wedges, but directly affect the the amount of labor employed per unit of output produced. The model uses these differential effects to identify the source of fluctuations in observed outgut and employment.

To see this, recall the production functions, optimality conditions for labor use, and definition of the wedges. First, the employment and output of an industry are linked by the industry production function $x_{it} = z_{it} n_{it}^{i}$ $\frac{Q_{M}}{s=1} x_{ist}^{i}$ ¹. Therefore, a change in the TFP of industry i is given by

$$
z_{it} = x_{it} \t i R_{it} \t (1 \t i) \t x_{ist}
$$

The constant returns-to-scale of industry i's production function implies that if an observed change in industry i's outgut x_{it} from geriod t 1 to t exceeds that of n_{it} ⁱ $\begin{bmatrix} Q_{M} \\ s=1 \end{bmatrix} x_{ist}^{1/s}$ \Box , \Box , there must have been an increase increase in i's TFP such that $z_{it} > 0$. $Z_{it} = X_{it}$ i H_{it} (1 i) \cdot i $t_i X_{ist}$

i industry i's production function im

o t exceeds that of n_{it} ⁱ Q_{M} X_{ist}^{1} is
 $u_t > 0$.

it in title time of the ratio of its
 $u_{n,i}$
 $\frac{w_{n,i}}{p_i x_i}$

Industry i's optimality condition for labor equates the ratio of its as we bill to revenue with labor's marginal **groduct**, times the wedge, i.e. $\frac{wn_i}{p_i x_i}$

6.3 Using the Model to Back Out Shocks from the Data

Recall that equations ()-() are a system of log-linear equations describing the (first-order approximated) elasiticity of each equilibrium variable to the liquidity B_i and productivity z_i of each industry i. Suppose that the static model is extended to be a repeated cross-section. Then equations $(-)$ describe the evolution of the equilibrium variables that occurs each period in response to liquidity and productivity shocks, to a first-order approximation. I obtain a closed-form solution for this evolution, which is derived in the Appendix.

Let X_t and N_t denote the M-by-1 dimensional vectors of industry out ut and employment growth at time t, x_{it} and A_{it} , respectively. And let B_t and z_t similarly denote the M-by-1 dimensional vectors of industry liquidity and productivity growth (i.e. shocks) at time t, B_{it} and Z_{it} , respectively. The closed-form solutions for X_t and N_t yield

$$
X_t = G_X B_t + H_X z_t
$$

$$
N_t = G_N B_t + H_N z_t
$$

These respectively describe how each industry's output and employment changes each period in response to the liquidity and productivity shocks to every industry. Here, the M-by-M matrices G_X ; G_N ; H_X and H_N are functions of the economy's input-output and credit networks and, and capture the effects of the input-output and credit linkages in propagating either type of shock across industries, as was described in the theoretical analysis. The elements of these matrices depend only on the model parameters, and therefore take their values from my calibration. 6.3 Using the Model to Back Out Shocks from the Bositical formula in the Northelisty structure in the function of the structure controller at the function of the same particle in the structure of the structure of the stru

I construct X_t and N_t for US industrial production industries (at the three-digit NAICS level) from the out_stut and em_s loyment data described above. Let \mathcal{K}_t and \mathcal{N}_t denote these observed fluctuations. I then have a system of 2M equations in as many unknowns for each quarter, and can invert the system to back-out shocks B_t and Z_t each quarter from 1997 Q1 to 2013 Q4.

> $B_t = G_N^1$ N_t $H_N z_t$ $z_t = Q^{-1} \hat{X}_t Q^{-1} G_X G_N \hat{G}_N$

Figure & shows the time series of the estimated liquidity and productivity shocks which hit the US auto manufacturing industry each quarter over the sample period.

From the figure, we can see that the changes in auto manufacturing's liquidity and productivity both fluctuate moderately around zero for most of the sample period. Between 2007 and 2009, the liquidity available to this industry took a sharp drop for a number of consecutive quarters, reaching up to a 25 percent decline. Over this period, the industry's output and employment experienced a large drop attributable to changes in the labor wedge of the industry. Given the credit linkages, the model is able to trace how much of the drop in th ewedge is due to a direct liquidity shock to auto manufacturing versus shocks to other industries being transmitted to it. The blue line plotted in the figure reflect the direct liquidity shocks experienced each quarter by the industry.

In addition, the TFP of the industry seems to have not fluctuated greatly over this recessionary period; in fact, it increased slightly. These features broadly hold across most industries in industrial production. The aggregate effects of these features and their interpretation will be discussed in subsequent sections.

6.4 Dynamic Factor Analysis

Next, I decompose the changes in industry liquidity and productivity, B_t and z_t , into an aggregate and industry-level shock. I assume that each may be described by a common component and a residual idiosyncratic component.

$$
B_t = B F_t^B + U_t
$$

$$
z_t = z F_t^z + v_t
$$

Here, $\mathsf{F}^\mathsf{B}_\mathsf{t}$ and $\mathsf{F}^\mathsf{z}_\mathsf{t}$ are scalars denoting the common factors affecting the out ut and employment growth of each industry, respectively, at quarter t. I interpret these factors as aggregate liquidty and productivity shocks, respectively. The M-by-1 vectors B and Z denote the factor loadings, and map the aggregate shocks into each industry's liquidity and productivity shocks. Together, $B F_t^B$ and $Z F_t^Z$ comprise the aggregate components of B_t and z_t .

The residual components, u_t and v_t , unexplained by the common factors, are the idiosyncratic or industrylevel shocks affecting each industry's liquidity and productivity growth. I assume that $\ E^B_t$; u_t and $\ F^B_t$; u_t are each serially uncorrelated, F_t^B ; u_t ; F_t^z ; and v_t are mutually uncorrelated, and the variance-covariance matrices of U_t and V_t , uu and V_V , are diagonal.

I suppose further that the factors follow an $AR(1)$ process such that

$$
F_t^B = B F_t^B{}_1 + B_t^B
$$

$$
F_t^Z = Z F_t^Z{}_1 + Z_t^Z{}_1^B{}_1
$$

Here, $\frac{B}{t}$ and $\frac{z}{t}$ are independently and identically distributed. Hence, I have two dynamic factor models; one for the liquidity shocks B_t and one for the productivity shocks z_t .

Use standard methods to estimate the model. To predict the factors, I use both a one-step prediction method and Kalman smoother. The Kalman smoother yields factors which explain more of the data. Since it

Figure 8:

7 Empirical Results

I now present and discuss the empirical results using the shocks estimated in the previous sections.

7.1 Aggregate Volatility Over Full Sample Period

In this section, I use the shocks estimated in the previous section to estimate how much of observed volatility in aggregate industrial production from 1997Q1:2013Q4 can be explained by each type of shock. In addition, I estimate the contribution of the credit network of the US industrial groduction industries to aggregate volatility. What follows is a brief summary of the procedure; a more detailed description is given in the Appendix.

7.1.1 Shocks and Aggregate Fluctuations

Let the variance-covariance matrix of industry outgut growth X_t be denoted by X_t . In addition, let s denote the M -by-1 vector of industry shares of aggregate output during the median year of my sample, 2005. Since these shares are close to constant across the quarters in my sample, the volatility of aggregate industrial out_{wer} - henceforth **aggregate volatility** - can be a with a strated by $\frac{2}{3}$, where

$$
2 \t s^0 \t x x s
$$

The factor model described above implies the following identities for the variance-covariance matrices of outgut growth X_t and those of the shocks B_t and z_t .

$$
xx = G_X \quad_{BB} G_X^0 + H_X \quad_{zz} H_X^0
$$

 $BB = B \, \frac{B}{FF} \, B + \, \frac{0}{BW}$ + $\frac{zz}{z} = \frac{z}{z} \, \frac{0}{FF} \, \frac{0}{z} + \, \frac{0}{wy}$

The fraction of observed aggregate volatility generated by aggregate liquidity shocks can be computed as the ratio of volatility generated by the aggregate component of B_t to ².

s ⁰G^X ^B B F F 0 ^B G⁰ X s ingenailedolati433e impliesmatriceriance matricesof ^B XX 8d 88/F10 6.9738 Tf 4.633 -1.494 Td [4t Since the shevious se7(y)-2il99(gc(y)-33443o)-28(0 shev7Q1:20shevme)-333(aggro)-28(de)-333(ime)-3ta-289(ushe)-38(t)-333 shevioa26 Tf 81.901 0 Td [30d [88/F10 6.96.9738 Tf 7.195 -1.494 Td [6BB XX

The results of this analysis are summarized in Table (). I find that, for the full sample period $1997Q1:2013Q4$, aggregate volatility in industrial production is about 0.19%¹², and is driven primarily by idiosyncratic pro-

the theoretical analysis, the credit network primarily propagates liquidity shocks. Indeed, most of the effect of the credit network is in amplifying the aggregate liquidity shock.

7.1.3 Discussion

In summary, the main results of this analysis are that, when taking into account the credit linkages between industries,

- 1. Aggregate productivity shocks **do not** play an important role in aggregate fluctuations in industrial production
- 2. Aggregate volatility is driven primarily by idiosyncratic productivity shocks and aggregate liquidity shocks
- 3. The credit network of the economy plays an important role in amplifying fluctuations in aggregate out aut

How does this compare to the findings of studies? Foerster et al. (2011) show that, when accounting for the effects of ingut-outgut linkages in grogagating shocks across industries, the role of aggregate groductivity shocks in driving the business cycle is diminished; more of aggregate volatility in IP can be explained by industry-level groductivity shocks. Nevertheless, they still find a quantitatively large role for aggregate productivity shocks. On the other hand, my analysis shows that when one takes into account the credit linkages between non-financial firms in the economy, the role of aggregate productivity shocks is minimal. On the contrary, aggregate liquidity shocks seem to play a vital role the business cycle. Indeed, the importance of shocks emanating from the financial sector to real economy as a whole is well-documented.

7.2 Great Recession

A1. Agency Problem

A2. Simple Model Solution

Solved in closed-form recursively, starting with the final firm in the chain, firm M.

Firm M

 $\overline{}$

Recall that firm M collects none of its sales from the household up front (does not give the household any trade credit, τ_{nu} M=0). Then its problem is to choose its input purchases, loan from the bank, and the trade credit loan from M-1, to maximize its profits, subject to its cash-in-advance, supplier borrowing, and bank borrowing constraints.

> $max_{n_M ; x_M = 1; b_M ; M = 1}$ $PM X_M$ wn_M $PM 1X_M = 1$ s:t: $wn_i + (1 \t i 1)p_{i-1}x_{i-1} b_i + \t i 1 + p_Mx_M$ M b_M $(B_M + (1))_M$) $p_M x_M$ M 1 P M 1 X M 1 M ;M 1 P M X M

Recall that the firm does not collect any cash-in-advance from the household, so that its trade credit $M = P_M X_M$. Also recall that its borrowing constraints () and () bind in equilibrium, so that the problem can be rewritten

 max_{n_M ; x_M ₁; M PM X_M wnM PM 1 X_M 1

s:t: $Wn_M + p_{M}$ 1 X_M 1 M p_M X_M

where

 $M = M:M + B_M$

Notice that because $M = PM X_M$, M is given by exogenous parameters.

 $M_1 = M; M_1 + B_M + 1$ $M P_M X_M$ And () and () imply that $\frac{p_M x_M}{p_M x_{M-1}} = \frac{1}{M! M_M x_{M-1} (1-M)}$. Therefore, $M_1 = M; M_1 + B_M + 1$ <u>M</u> wn_{M} 1 = M M 1 M 1! M ; M 1(1 M) $PM X_M$

Continuing recursively, we can write \boldsymbol{n}_i as a function of \boldsymbol{x}_M , for each <code>i</code> (LEFT OFF HERE)

$$
wn_{i} = p_{M} x_{M} \overset{0}{\underset{j=1}{\bigoplus}} \underset{j=1}{\overset{1}{\bigoplus}} \underset{j=1}{\overset{0}{\bigoplus}} \underset{j=1}{\overset{1}{\bigoplus}} \underset{j=1}{\
$$

The household's preferences and optimality conditions imply

$$
w = \frac{V^0(N)}{U^0(x_M)} = x_M
$$

Let good M be the numeraire. Combining () with () yields a closed-form expression for each firm's labor use.

$$
n_i = \begin{array}{cc} \psi & \psi \\ i & j_{i,j} \\ j = i + \end{array} \quad (1 \quad j) \, j
$$

Recall that the production functions imply that aggregate output can be written

Then () and () yield a closed-form ex gression for aggregate outgut.

A3. Production In uence Vector

 $\overline{}$

v_i= γ captures downstream propagation (supply effects). But misses upstream demand effects. Total effect is sum $\frac{p}{i}$ =1 v_i

A4. Proof of Proposition 1

Proof: From () (chi de ntion) and () (phi interdependence),

$$
{i}\,=\,min\,-1;\,\ \frac{1}{r{i}}-B_{i}\,+\, \ _{ij\,-1}\qquad \ \ _{i+1\,;i}\,\frac{1}{\frac{1}{\left| i+1\,;i\,;\left(1\,\quad \right. \right.\,i+1\,)} }
$$

It follows that

 $\overline{}$

$$
\frac{d_{i-1}}{dB_i} = \frac{8}{\frac{r_i}{r_i} \frac{\frac{1}{r_i} - \frac{1}{r_i} \frac{1}{r_i}}{1 - \frac{1}{r_i} \frac{1}{r_i} \frac{1}{r_i}} > 0 \quad \text{if} \quad i \le 1
$$
\n
$$
\frac{d_{i}}{dB_i} = 0 \quad 8j > i \quad \text{and} \quad \frac{d_{i}}{dB_i} = \frac{1}{r_i} > 0 \quad \text{for} \quad j = i
$$

Putting these cases together, we can write $\frac{d \log}{d B_i}$ for any j.

$$
\frac{d \log j}{dB_i} = \frac{\frac{8}{\epsilon_i} \cdot \frac{1}{r_i} > 0}{\frac{1}{\epsilon_i} \cdot \frac{1}{\epsilon_i} \cdot \frac{1}{\epsilon_i} \cdot \frac{1}{\epsilon_i} \cdot \frac{1}{\epsilon_i} \cdot \frac{1}{\epsilon_i} \cdot \frac{1}{\epsilon_i} \cdot \frac{1}{\epsilon_i}} \quad \text{0.8k} \quad \text{if } j < i
$$
\n
$$
\frac{d \log j}{d \epsilon_i} = \frac{1}{\epsilon_i} \cdot \frac{1}{\epsilon
$$

It follows that
$$
\frac{d \log j}{d B_i}
$$
 0 and $\frac{d}{d j_i} = \frac{d \log j}{d B_i}$ 0.

A5. Solution Procedure in General Model

Claim: solution procedure takes same form in general model as in stylized. Firm i's groblem is to maximize grofits subject to its liquidity constraint.

$$
\begin{array}{ccc}\n&\mathbb{X}^N &\\ \nmax_{n_i; f x_{is} g_{s1}} & p_i x_i & w n_i & p_s x_{is} \\
&\mathbb{X}^N & & \\ &w n_i + & p_s x_{is} & i p_i x_i \\
& & & \\ s=1 & & \end{array}
$$

where \rightarrow denotes the tightness of i's liquidity constraint.

Use of I-O tables and Compustat data $\overline{}$

A6. Log-Linearized System

Stars are point around which system is approximated. Calibrated equilibrium values.

For all i and j

 $\overline{}$

In order: firm i's optimality condition for input j, firm i's optimality condition for labor, definition of wedge phi_i, household optimality condition for consumption of each good, market clearing for good i, production function for firm i, household budget constraint, labor market clearing condition, household ortimality for labor versus aggregate consumption.

> $p_1 + x_{ij} = \tilde{i} + p_i + x_i$ $w + n_i = \tilde{i} + p_i + x_i$ $\tilde{i} =$ 8 \prec : γ^c if $\gamma < 1$ 0

Log-linearizing ⁱ yields

$$
\gamma_i = \begin{cases} 8 & B_i \\ \frac{B_i}{r_{i-i}} & B_i + \frac{P}{r_{i-i}} \end{cases} \quad \frac{P_{M}}{c=1} \quad \frac{di}{c(1-c)! \cdot di} \quad \gamma_c \quad \text{if} \quad i < 1
$$
otherwise

Thus, in the full model wedges respond endogenously to direct liquidity shocks B_i and to changes in its customers' wedges $\,$ $\rm c$

$$
\begin{array}{ccc}\n & 8 \\
 & < \tilde{1}^c \text{ if } & | < 1 \\
\tilde{1} & = & \vdots \\
 & 0 & \text{otherwise}\n\end{array}
$$

where

~i c = Bi rⁱ ⁱ B~ⁱ + rⁱ ⁱ XM c=1 ci ci ^c(1 ^c)! ci ~c rⁱ ⁱ XM c=1 ci ci ^c(1 ^c)! ci ~ci

and

 \sim_{ci} = \star_{ci} \star_{i}

This expression says that industry i's wedge can change either from direct liquidity shock to i (given by B_i), changes in the wedges of customers (given by $\tilde{ }_i$) through credit linkages $\tilde{ }_i$, or changes in the composition of industry i's sales (given by \sim_{ci} for all customers c), also through credit linkages.

Consider first a liquidity shock to industry j, given by $B_j < 0$. How does this affect i, and how does this effect depend on i's credit linkages with j ? From (), we can see that there are two effects. First, the shock reduces j, so that \tilde{p} < 0. This pushes j down. Second, because i has M customers, x_{ji} falls by more than x_i falls. Therefore, j's share of i's outget ji falls, and γ_i < 0. This gushes i ug. The stronger is j

small, as discussed in the quantitative analysis.

÷

A9. Aggregate Volatility

Recall that the growth in industry output can be written as a function of the industry liquidity and productivity shocks. Recall that X_t is a vector of the percentage change x_{it} in each industry's output at time t.

$$
X_t = G_X B_t + H_X z_t
$$

And the shocks B_t and z_t , in turn, are composed of an aggregate and idiosyncratic components.

 $B_t = B F_t^B + U_t$ $F_t^B = B F_t^B + H_t^B$ $z_t = z F_t^z + v_t$ $F_t^z = z F_t^z + t$

Then letting $_{XX}$ denote the variance-covariance matrix of X_t (and similarly for the other variables), we have

> $_{\text{XX}}$ = G_X _{BB} G_X⁰ + H_X_{zz}H_X⁰ $BB = B \t{B}_{FF} + u$ $zz = z \frac{z}{FF} \frac{0}{z} + vv$

where \quad $_{\textsf{\textbf{uu}}}$ and \quad $_{\textsf{\textbf{vv}}}$ are diagonal matrices.

Aggregate manufacturing out ut at time t is defined as $i \times it$. Let

- [18] Di Giovanni, Julian, Andrei A. Levchenko, and Isabelle Mejean (2014), Firms, Destinations, and Aggregate Fluctuations", **Econometrica**, $82(4)$, $1303-1340$.
- [19] Dupor, Bill (1999), "Aggregation and Irrelevance in Multi-Sector Models", Journal of Monetary Economics, 43(2), 391-409.
- [20] Fisman, Raymond and Inessa Love (2003), "Trade Credit, Financial Intermediary Development, and Industry Growth", Journal of Finance, $58(1)$, $353-374$.
- [21] Foerster, Andrew T., Pierre-Daniel Sarte, and Mark W. Watson (2011), "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production", Journal of Political Economy, 119(1), 1-38.
- [22] Gabaix, Xavier (2011), "The Granular Origins of Aggregate Fluctuations", **Econometrica**, 79(3), 733-772.
- [23] Gilchrist, Simon and Egon Zakrajsek (2012), "Credit S_{preads} and Business Cycle Fluctuations", American Economic Review, 102(4), 1962-1720.
- [24] Horvath, Michael (1998), "Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent Sectoral Shocks", Review of Economic Dynamics $1(4)$, 781-808.
- [25] Horvath, Michael (2000), "Sectoral Shocks and Aggregate Fluctuations", Journal of Monetary Economics $45(1), 89-108.$
- [28] International Monetary Fund (2005), "International Financial Statistics", CD-ROM.
- [27] Jacobson, Tor and Erik von Schedvin (2015), "Trade Credit and the Propagation of Corporate Failure", Econometrica, 83(4), 1315-1371.
- [28] Kalemli-Ozcan, Sebnem, Se-Jik Kim, Hyun-Song Shin, Bent E. Sorensen, and Sevcan Yesiltas (2013), "Financial Shocks in Production Chains", Unpublished.

[29]