Q AL FY NG EXAM N GEOME RY AND OPOLOGY & MMER

Yoc shoc d, tte pt the pro e s P rti credit i e gi e for seriocs e orts

- (1) Let S be a closed non-orientable surface of genus g.
 - (a) What is $H_i(S; \mathbb{Z}_2)$? (answer only)
 - (b) Find out the maximal number of disjoint orientation reversing simple closed curves in S. (Justify your answer)

11

- (2) Let X be a path-connected space and \widetilde{X} a universal covering space of X. Prove that if \widetilde{X} is compact, then $\pi_1(X)$ is a finite group.
- (3) Let M be a compact, connected, orientable n-manifold, where n is odd. (You may assume, if you like, that M is triangulated.)
 - (a) Show that if $\partial M = \emptyset$, then $\chi(M) = 0$.
 - (b) Show that if $\partial M \neq \emptyset$, then $\chi(M) = \frac{1}{2}\chi(\partial M)$.
- (4) Let M be a closed 3-manifold. Suppose M is a homology sphere, i.e., M has the same \mathbb{Z} coe cient homology groups as S^3 , in other words, $H_n(M;\mathbb{Z}) = H_n(S^3;\mathbb{Z})$ for all n. Let kbe a knot in M (i.e., k is a closed 1-dimensional submanifold of M, in other words, k is an
 embedded closed curve S^1 in M). Compute $H_n(M-k;\mathbb{Z})$ for all n, where M-k is the
 complement of k.

GT Qual 2011 Part II

Show All Relevant Work!

1) The image of the map $X : \mathbb{R}^2$! \mathbb{R}^3 given by

$$X(;) = ((2 + \cos())\cos();(2 + \cos())\sin();\sin())$$

is the torus obtained by revolving the circle $(y \ 2)^2 + z^2 = 1$ in the yz plane about the z axis. Consider the map $F : \mathbb{R}^3$! \mathbb{R}^2 given by F(x;y;z) = (x;z) and let f = (F restricted to the torus).

- a) Compute the Jacobian of the map f X: (Note that the map X descends to an embedding of S^1 S^1 into \mathbb{R}^3 but we don't need to obsess over the details of this.)
 - b) Find all regular values of f.
- c) Find all level sets of f that are not smooth manifolds (closed embedded submanifolds).
- 2a) Write down the deRham homomorphism for a smooth manifold M; explain brie y why this de nition is independent of the (two) choices made.
 - b) State the deRham Theorem for a smooth manifold M.
- c) A crucial step in the proof of the deRham Theorem is: If M is covered by 2 open sets U and V, both of which and their intersection satisfy the deRham theorem, then $M = U \[V]$ satis es the deRham theorem. Brie y explain how this crucial step is proven.
- 3a) If is a di erential form, then must it be true that $^{\wedge}$ = 0? If yes, then explain your reasoning. If no, then provide a counterexample.
 - b) If and are closed di erential forms, prove that ' is closed.
 - c) If, in addition (i.e., continue to assume that is closed), is exact, prove that is exact.
- 4) The Chern-Simons form for a hyperbolic 3-manifold with the orthonormal framing $(E_1; E_2; E_3)$ is the 3-form

$$Q = \left(\frac{1}{8^{2}}\right) \left(!_{12} \wedge !_{13} \wedge !_{23} \quad !_{12} \wedge _{1} \wedge _{2} \quad !_{13} \wedge _{1} \wedge _{3} \quad !_{23} \wedge _{2} \wedge _{3} \right)$$

where (1; 2; 3) is the dual co-frame to $(E_1; E_2; E_3)$ (note that [Lee] uses , but here we use) and the I_{ij} are the *connection* 1-forms. The connection 1-forms satisfy

$$d_{1} = !_{12} ^{1} _{2} !_{13} ^{1} _{3}$$
 $d_{2} = +!_{12} ^{1} _{1} !_{23} ^{1} _{3}$
 $d_{3} = +!_{13} ^{1} _{1} +!_{23} ^{2}$

- a) In $\mathbf{H}^3 = f(x;y;z)$: z > 0g with the Riemannian metric $g = \frac{1}{z^2}dx$ $dx + \frac{1}{z^2}dy$ $dy + \frac{1}{z^2}dz$ dz, orthonormalize the framing $(\frac{@}{@x};\frac{@}{@y};\frac{@}{@z})$:
 - b) Compute the associated dual co-frame (1; 2; 3):
 - c) For this orthonormal framing (and dual co-frame), in $(H^3;g)$, compute the Chern-